Giải phương trình:
\(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
Giúp em vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x-4\right)\sqrt{x-2}+\left(x-2\right)\sqrt{x+1}+2\left(x-3\right)=0\)
ĐK:\(x\ge2\)
\(\Leftrightarrow2\left(x-4\right)\left(\sqrt{x-2}-1\right)+\left(x-2\right)\left(\sqrt{x+1}-2\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x-4\right)\frac{x-2-1}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x+1-4}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x-4\right)\frac{x-3}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x-3}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2\left(x-4\right)}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}-2\right)=0\)
Suy ra x=3
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
Nghĩ đc bài nào làm bài đấy ^^
\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)
\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)
\(\Leftrightarrow x-2mx=m^2+3\)
\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)
*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)
Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)
Pt vô nghiệm
*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)
Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)
Kết hợp ĐKXĐ \(x^2+x-3\ge0\)
\(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)
Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2
=> KL
2) ĐKXĐ : -1 < x < 8
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)
\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Khi đó \(a+\frac{a^2-9}{2}=m\)
\(\Leftrightarrow2a+a^2-9=2m\)
\(\Leftrightarrow a^2+2a-9-2m=0\)(1)
Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)
Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)
\(\Leftrightarrow a^2+2a-9\ge-10\)
\(\Leftrightarrow a^2+2a+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)
Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 < x < 8
* với m < -5 thì pt vô nghiệm
P/S: chả bt cách này đúng ko nx =.='
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
1 số gợi ý
hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(2x-2y-1\right)=6\left(y+2\right)\\6y+12\sqrt{2x-1}=2y^2-2x+46\end{matrix}\right.\)(1)
Đặt \(\sqrt{2x-1}=t\left(t\ge0\right)\)
(1)\(\Leftrightarrow\left\{{}\begin{matrix}\left(t^2+1\right)\left(t^2-2y\right)=6\left(y+2\right)\left(2\right)\\6y+12t=2y^2-t^2+45\end{matrix}\right.\)
(2)\(\Leftrightarrow\left(t^2+4\right)\left(t^2-2y-3\right)=0\)
\(\Leftrightarrow t^2-2y-3=0\)
ta có hpt mới sau : \(\left\{{}\begin{matrix}t^2-2y-3=0\\2y^2-t^2+45=6y+12t\end{matrix}\right.\)
một cách trâu bò nhưng hiệu quả là
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2y^2-t^2-6y-12t+45=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2\left(\dfrac{t^2-3}{2}\right)^2-t^2-6\left(\dfrac{t^2-3}{2}\right)-12t+45=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)
\(\left(a,b,n\in N\right)\left\{{}\begin{matrix}n^2=a+b\\n^3+2=a^2+b^2\end{matrix}\right.\)
Áp dụng BĐT cơ bản : \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)
\(\rightarrow n^3+2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\left(n^2\right)^2=\dfrac{1}{2}n^4\)
\(\Rightarrow n^3+2-\dfrac{n^4}{2}\ge0\)\(\Rightarrow0\le n\le2\)
Xét từng TH của n và kết quả nhận được là \(n=2\); (a,b) là hoán vị của (1,3)
\(ĐKXĐ:x\in R\)
Phương trình cho tương đương :
\(\left(x^2-1\right)\left(x^2+1\right)+\left(x^2+1\right)\sqrt{x^2+1}=0\)
Đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)\Rightarrow a^2-2=x^2-1\)
Khi đó pt trở thành :
\(a^2\left(a^2-2\right)+a^3=0\)
\(\Leftrightarrow a^2\left(a^2-2+a\right)=0\)
\(\Leftrightarrow a^2\left(a+2\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge1\) )
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x^2+1=1\Rightarrow x=0\) ( Thỏa mãn )
Vậy \(S=\left\{0\right\}\)