chứng minh rằng ko tồn tại 1 số tự nhiên khi chia hết cho 21 dư 7 khi chia 84 thì dư3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào nha, letrunghieu :
Gọi số cần tìm là x, thương khi chia a cho 21,84 lần lượt là a,b ta có:
x = 21a+7 ; x=84b+2
=> x = 7(3a+1) hay x chia hết cho 7.
Mặt khác ta có: 84b chia hết cho 7 nhưng 2 lại không chia hết cho 7 nên 84b+2 không chia hết cho 7.
=> Không tồn tại số tự nhiên x vừa chia hết cho 7 vừa không chia hết cho 7
Giả sử tồn tại số tự nhiên a thì số tự nhiên đó có dạng \(21k+7\) và \(84t+3\) (k,t \(\in\) N)
Ta có : a = 21k + 7
và a = 84t + 3
=> 21k + 7 = 84t + 3
=> 21k - 84t = -4
=> 21 ( k - 4t ) = -4
=> k - 4t = \(-\frac{4}{21}\)
Mâu thuẫn vì tổng các số tự nhiên là số tự nhiên.
Nên điều giả sử là sai
Vậy không thể tồn tại một số chia cho 21 dư 7 mà chia cho 84 lại dư 3 (đpcm).
gọi thương khi chia cho 21 là a,thương khi chia cho 84 là b
21a+7=7(3a+1) chia hết cho 7
84b+3 chia 7 dư 3
vậy không có số tự nhiên khi chia 21 dư 7,chia 84 chia 3
gọi thương khi chia cho 21 là a,thương khi chia cho 84 là b
21a+7=7(3a+1) chia hết cho 7
84b+3 chia 7 dư 3
vậy không có số tự nhiên khi chia 21 dư 7,chia 84 chia 3
Giả sử tồn tại số tự nhiên a thì số tự nhiên đó có dạng\(21k+7và84t+3\left(kt\in N\right)\)
Ta có : a = 21k + 7
và a = 84t + 3
=> 21k + 7 = 84t + 3
=> 21k - 84t = -4
=> 21 ( k - 4t ) = -4
=> k - 4t =\(-\frac{4}{21}\)
Mâu thuẫn vì tổng các số tự nhiên là số tự nhiên.
Nên điều giả sử là sai
Vậy không thể tồn tại một số chia cho 21 dư 7 mà chia cho 84 lại dư 3 (đpcm).
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
1.
a chia hết cho 2 dư 1
=> a có dạng là 2n+1
b chia hết cho 2 dư 1
=> b có dang là 2m+1
=>a-b=2n+1-2m-1=2n-2m=2 (n-m) luôn chia hết cho 2