chứng minh rằng 2^2n(2^2n+1 -1) -1 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
minh van chua ro phan de 2^2n+1-1 la (2^2n+1) hay nhu de ghi ban a
22n(22n+1-1)-1
\(=2^{4n+1}-2^{2n}-1=2.2^{4n}-2^{2n}-1\)
\(=2\left(2^{2n}\right)^2-2^{2n}-1=A\)
Đặt \(2^{2n}=t\)
\(\Rightarrow A=2t^2-t-1=\left(2t+1\right)\left(t-1\right)\)
\(=\left(2.2^{2n}+1\right)\left(2^{2n}-1\right)\)
\(=\left(2^{2n+1}+1\right)\left(2^{2n}-1\right)=\left(2+1\right)\left(2^{2n}-2^{2n-1}+...+1\right)\left(2+1\right)\left(2^{2n-1}+...-1\right)\)
\(=9.B\)
Vậy \(A⋮9\)
a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4
b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)