K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a) \(A=7+7^2+...+7^{99}\)

\(7A=7^2+7^3+...+7^{100}\)

\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)

\(6A=7^{100}-7\)

\(A=\frac{7^{100}-7}{6}\)

Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)

b) \(A=7+7^2+...+7^{99}\)

\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)

\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)

\(A=399+...+7^{96}.399\)

\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)

8 tháng 10 2017

Còn bn nào giải đc phần c không 

8 tháng 10 2017

Ta có: \(A=7+7^2+7^3+7^4+....+7^{99}\)

\(\Rightarrow7A=7^2+7^3+7^4+7^5+...+7^{100}\)

\(\Rightarrow7A-A=\left(7^2+7^3+7^4+7^5+...+7^{100}\right)-\left(7+7^2+7^3+7^4+...+7^{99}\right)\)

\(\Rightarrow6A=7^{100}-7\Rightarrow A=\dfrac{7^{100}-7}{6}\) (1)

a) Từ (1) suy ra \(A< \dfrac{7^{100}}{6}\)

11 tháng 10 2017

Thanks

26 tháng 4 2016

A có 1000 số hạng. ghép lần lượt 2 số hạng liên tiếp với nhau ta có

\(A=\left(1+7\right)+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{998}\left(1+7\right)\)

\(A=8\left(1+7^2+7^4+7^6+...+7^{996}+7^{998}\right)\) chia hết cho 4

15 tháng 6 2019

a) 2A=2^2+2^3+...+2^100

A= 2A-A= 2^100-2 không phải là số chính phương

A+2 = 2^100 là số chính phương

b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A

c) 2100 - 2 = 299.2-2=833.2 -2  => n rỗng

d) ta có: 24k chia 7 dư 2 

2100-2 = 24.25-2 chia hết chp 7

e) ta có: 24k chia 6 dư 4

2100-2 = 24.25-2 chia 6 dư 2

f) ta có: 24k tận cùng 6

2100-2 = 24.25-2 tận cùng 4

15 tháng 6 2019

Cảm ơn bạn nhé :))