Bài 1: Tìm x thuộc N:
a) (75 + x) chia hết cho 5
b) ( 80 + x) chia hết cho 20
c) ( 50+x) chia hết cho x
Bài 2: Vì sao A chia hết cho 9
a) A = 1030 + 35.
b) A= 1+2+3 +.............+179.
Các bạn giúp mình với!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
a, x + 1 ⋮ 16
=> x + 1 thuộc B(16)
=> x + 1 thuộc {0;; 16; 32; 64;....}
=> x thuộc {-1; 15; 31; 63; ...}
các phần còn lại làm tương tự
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
A=77+105+161
TA THẤY 77 CHIA HẾT CHO 7
105 CHIA HẾT CHO 7
161 CHIA HẾT CHO 7
NÊN ĐỂ A CHIA HẾT CHO 7 THÌ X CŨNG PHẢI CHIA HẾT CHO 7 => X THUỘC 7K
NGƯỢC LẠI NẾU ĐỂ A KHÔNG CHIA HẾT CHO 7 => X KHÁC 7K
Bài 2:
\(a,\Leftrightarrow x^5-x^3+5x+a=\left(x+1\right)\cdot a\left(x\right)\)
Thay \(x=-1\Leftrightarrow-1+1-5+a=0\Leftrightarrow a=5\)
\(b,\Leftrightarrow x^4+x^3+ax-2=\left(x-2\right)\cdot b\left(x\right)\)
Thay \(x=2\Leftrightarrow16+8+2a-2=0\Leftrightarrow2a=-22\Leftrightarrow a=-11\)
Bài 1:
\(x^{19}-x-3=\left(x+1\right)\cdot a\left(x\right)+R\) với R là hằng số (do x+1 bậc 1)
Thay \(x=-1\Leftrightarrow-1+1-3=R\Leftrightarrow R=-3\)
Vậy phép chia dư -3
Để ( 75 + x) \(⋮5\)thì pải có tận cùng = 0 hoặc 5
=> x= 0 hoặc 5
Để ( 80+x) \(⋮20\)thì pải \(⋮4;5\)
=> (80+x) pải có tận cùng là 0 hoặc 5 và 2 số cuối pải \(⋮4\)
=> x = 0
(50+x) \(⋮x\)
=> 50 + x \(\in b\left(x\right)\)