K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

B=31+2+..+100=35050

2 tháng 10 2017

đấy là dấu nhân hay cộng

2 tháng 10 2017

\(B=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-3\)

\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)

2 tháng 10 2017

Find someone who will ticked me. HEHE haha

6 tháng 10 2018

3^x=3^(1+2+3+....+100)

x=1+2+3+..+100

x=(100+1).100/2=5050

6 tháng 10 2018

\(3^x=3^1\cdot3^2\cdot...\cdot3^{100}\)

\(3^x=3^{1+2+...+100}\)

\(3^x=3^{5050}\)

Vậy x = 5050

24 tháng 2 2019

\(Q=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)

24 tháng 2 2019

Q = \(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)

    = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)

    = \(\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}\)

    = \(\frac{2}{3.4}=\frac{1}{6}\)

25 tháng 4 2019

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}\)

\(A=\left(\frac{2.3....99}{1.2....98}\right).\left(\frac{2.3....99}{3.4....100}\right)\)

\(A=\frac{99}{1}.\frac{2}{100}\)

\(A=\frac{198}{100}\)

1 tháng 1 2019

\(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}+7.2^{29}.3^{18}}\)

\(=\frac{5.2^{18}.3^{18}.2^{12}-2.2^{28}.3^{14}.3^4}{2^{28}.3^{18}.\left(5+7.2\right)}\)

\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{18}}{2^{28}.3^{18}.19}=\frac{2^{28}.3^{18}.\left(5.4-2\right)}{2^{28}.3^{18}.19}\)

\(=\frac{5.4-2}{19}=\frac{18}{19}\)

26 tháng 2 2017

-29 

256

26 tháng 2 2017

làm cụ thể ra hộ mình

21 tháng 11 2016

e chịu thui

21 tháng 11 2016

\(B=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{n.\left(n+1\right)\left(n+2\right)}\)

\(\Leftrightarrow\frac{2B}{5}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow B=\frac{5}{4}-\frac{5}{2\left(n+1\right)\left(n+2\right)}\)