K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

Bằng một cách thần kì, ta tính được A = \(\dfrac{3^{^{12}}-1}{2}\)

Ta sẽ chứng minh 312 - 1 ⋮ 10, như vậy thì (312 - 1) : 2 là một số nguyên chia hết cho 5

Thật vậy:

Ta có 32 = 9 \(\equiv\) -1 (mod 10)

=> (32)6 \(\equiv\) (-1)6 (mod 10)

=> 312 \(\equiv\) 1 (mod 10)

=> 312 - 1 \(\equiv\) 0 (mod 10)

Hay 312 - 1 chia hết cho 10

Vậy bài toán đã được chứng minh 

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 7 2017
tự hỏi và tự trả lời :)
30 tháng 9 2019

a,\(2^4\cdot3^5:6^4\)

\(=\frac{2^4\cdot3^6}{\left(2\cdot3\right)^4}\)

\(=\frac{2^4\cdot3^6}{2^4\cdot3^4}\)

\(=3^2\)

30 tháng 9 2019

Bài 2

\(a,5^3\cdot8=5^3\cdot2^3=10^3=1000\)

\(b,2^5-2019^0=32-1=31\)

\(c,3^3+2^5-1^{10}=27+32-1=58\).

\(d,9^2\cdot33-81\cdot23+5^2=81\cdot33-81\cdot23+25\)

\(=81\cdot\left(33-23\right)+25\)

\(=810+25=835\)

\(g,\left[2^2+6^2\right]:5+11^2\)

\(=\left[4+36\right]:5+121\)

\(=40:5+121=8+121\)

\(=129\)

\(d,\frac{14\cdot3^{10}-5\cdot3^{10}}{3^{12}}\)

\(=\frac{3^{10}\cdot\left(14-5\right)}{3^{12}}\)

\(=\frac{3^{10}\cdot9}{3^{12}}\)

\(=\frac{3^{10}\cdot3^2}{3^{12}}=\frac{3^{12}}{3^{12}}\)

\(=1\)