K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

aaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaa

1 tháng 8 2021

đo jgfhjgh dfj hdfh vhfcvkjgb 

9 tháng 2 2022

gọi biểu thức trên là A , ta có :

\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+\dfrac{5}{3^5}-...+\dfrac{99}{3^{99}}+\dfrac{100}{3^{100}}\\ 3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\\ \Rightarrow A+3A=\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)+\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\\ \Rightarrow4A\cdot3=12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

từ đó ta được :

\(16A=3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\\ \Rightarrow A=\dfrac{\dfrac{3-101}{3^{99}}-\dfrac{100}{3^{100}}}{16}\\ \Rightarrow A=\dfrac{3}{16}-\dfrac{\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}}{16}< \dfrac{3}{16}\)

 

9 tháng 2 2022

help mik với 

24 tháng 1 2022

a tk

24 tháng 1 2022

mik gủi 1 ý 1 lần nha

3 tháng 7 2020

Bài làm:

a) \(a=2+2^3+2^5+...+2^{99}+2^{101}\)

\(\Rightarrow4a=2^3+2^5+2^7+...+2^{101}+2^{103}\)

\(\Rightarrow4a-a=\left(2^3+2^5+2^7+...+2^{103}\right)-\left(2+2^3+2^5+...+2^{101}\right)\)

\(\Leftrightarrow3a=2^{103}-2\)

\(\Rightarrow a=\frac{2^{103}-2}{3}\)

Vậy \(a=\frac{2^{103}-2}{3}\)

b) \(b=1-5^3+5^6-5^9+...+5^{96}-5^{99}\)

\(\Rightarrow125b=5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\)

\(\Rightarrow125b+b=\left(5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\right)+\left(1-5^3+5^6-5^9+...+5^{96}-5^{99}\right)\)

\(\Leftrightarrow126b=1-5^{102}\)

\(\Rightarrow b=\frac{1-5^{102}}{126}\)

Vậy \(b=\frac{1-5^{102}}{126}\)

Học tốt!!!!

21 tháng 10 2018

mình biết làm nhưng trả lời dài lắm

21 tháng 10 2018

\(A=5+5^2+5^3+...+5^{99}+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6.\left(5+5^3+...+5^{99}\right)\)

Vì \(A=6.\left(5+5^3+...+5^{99}\right)\)lên A chia hết cho 6.