K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Hạ MH vuông góc AB. Trên AB lấy điểm D sao cho MD vuông góc MF, hơn nữa vì MA vuông góc MB => ^AMF = ^BMD (1)( góc có cạnh tương ứng vuông góc) 
Tg ABC vuông cân tại A => MA = MB (2) và ^MBD = ^MAF = 45o (3) 
Từ (1), (2) ,(3) => tg AMF = tg BMD (g.c.g) => AF = BD (4) và MD = MF (5) 
Mặt khác ^EMF = 45o mà ^DMF = 90o => ^DME = EMF = 45o (6) 
Từ (5),(6) => tgEMF = tg DME (c.g.c) ( vì có cạnh ME chung) => DE = EF (7) 
Từ (4) và (7) => AB = AE + BD + DE = AE + AF + DE > EF + DE = 2DE <=> DE < AB/2 <=> MH.DE/2 < MH.AB/4 <=> S(EMF) = S(DME) < S(AMB)/2 = S(ABC)/4 (đpcm) 

Gọi I,J là trung điểm AB,AC. Đường thẳng IJ cắt OA tại H. Gọi D là giao điểm của AO và BC => BD và IH cùng vuông góc OA và AH = HD. Ta có: 
MA^2 = MH^2 + AH^2 = (MO^2 - OH^2) + AH^2 = MO^2 - (OH^2 - AH^2) = MO^2 - (OH + AH)(OH - AH) = MO^2 - OA.(OH - HD) = MO^2 - OA.OD (1) 
MK^2 = MO^2 - OK^2 = MO^2 - OB^2 = MO^2 - OD.OA (2) ( vì tg AOB vuông tại B và đường cao BD nên có hệ thức OB^2 = OA.OD) 
Từ (1) và (2) => MA^2 = MK^2 <=> MA = MK (đpcm)

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

a: CH=16^2/25=10,24cm

BC=25+10,24=35,24cm

AB=căn 16^2+25^2=căn 881(cm)

b: AH=căn 12^2-6^2=6căn 3cm

CH=AH^2/HB=108/6=18cm

BC=6+18=24cm

c: BC=căn 5^2+25^2=5 căn 26cm

BH=5^2/5căn 26=5/căn 26(cm)

CH=5căn 26-5/căn 26=24,51(cm)

d: AB=căn 16^2-14^2=2căn15(cm)

e: AB=căn 2*8=4cm

AC=căn 6*8=4căn 3(cm)

23 tháng 4 2018

ai giúp với

15 tháng 10 2021

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)

29 tháng 10 2021

Giải ra đi

a: AH=15cm

\(AB=5\sqrt{34}\left(cm\right)\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)