K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

mà AI là phân giác

nên AI vuông góc BC

b: Xét ΔABC có

AI,CM là trung tuyến

AI cắt CM tại G

=>G là trọng tâm

=>BG là đường trung tuyến của ΔABC

a: Xét ΔABI và ΔACI có

AB=AC
góc BAI=góc CAI

AI chung

=>ΔABI=ΔACI

b: ΔACB cân tại A

mà AI là phân giác

nên AI vuông góc BC

c: Xét ΔBAC có

AI,CM là các đườg trung tuyến

AI căt CM tại G

=>G là trọng tâm

=>BG là đường trung tuyến của ΔABC

16 tháng 5 2022

Tham khảo

undefined

a: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

b: Xét ΔBAC có

AI là đường trung tuyến

BD là đường trung tuyến

AI cắt BD tại M

Do đó: M là trọng tâm của ΔABC

c: BC=6cm nen BI=3(cm)

=>AI=4(cm)

hay AM=8/3(cm)

8 tháng 5 2022

a) Có: △ABC cân tại A => AB=AC

         và AI là tia p/g của góc ABC => góc BAI= góc CAI

Xét △ABI và △ ACI có

            AI chung

       góc BAI= góc CAI

       AB=AC

=>△ABI = △ ACI (c.g.c)

b)Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường trung tuyến của  △ABC

có :D là trung điểm của AC 

=> BD là đường trung tuyến của  △ ABC

trong  △ABC có 

    AI là đường trung tuyến thứ nhất

   BD là đường trung tuyến thứ hai

Mà 2 đường này cắt nhau tại M

=> M là trọng tâm của △ABC

BI=CI=BC/2=3(cm)

Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường cao

=> AI⊥BC

=> △ABI vuông tại I 

=> AI^2+ BI^2= AB^2

=> AI^2+9=25

  AI^2 = 16

=> AI = 4( cm)

10 tháng 5 2016

các bạn giúp  mik bài này 

10 tháng 5 2016

a) Xét 2 tam giác BAI và tam giác CAI, ta có:

       AB = AC (giả thiết tam giác cân)

 góc BAI = góc CAI (AI là tia phân giác góc A)

       AI là cạnh chung

\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)

\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)

Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)

\(\Rightarrow\) AI vuông góc với BC

b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)

\(\Rightarrow\) AI là trung tuyến của tg ABC

Lại có: BD là trung tuyến của tg ABC

Mà AD giao với BC tại M nên M là trọng tâm của tg ABC

c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)

 Áp dụng định lí Pitago vào tg vuông AIB có:

            \(AB^2=BI^2+AI^2\)

            \(\Rightarrow AI^2=AB^2-BI^2\)

             \(\Rightarrow AI^2=5^2-3^2=25-9=16\)

            \(\Rightarrow\) \(AI=4\) (cm)

            \(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)

Vậy AM = 8/3 (cm)

Chúc bạn học tốt !!!

6 tháng 5 2018

a.vì \(\Delta ABC\)cân tại A mà AI là đường phân phân giác của\(\widehat{A}\)=>AI đồng thời là đường cao và đường trung tuyến ứng với cạnh BC của tam giác ABC

=>\(AI\perp BC\)

b.xét tam giác ABC có

AI,CM là hai đường trung tuyến của tam giác ABC(gt)(cmt)

mà AI cắt CM tại G=>G là trọng tâm của tam giác ABC

=>BG là đường trung tuyến của tam giác ABC

c.ta có IB=IC=BC/2=18/2=9(cm)(AI là đương trung tuyến ứng với cạnh BC của tam giác ABC=>I là trung điểm của tam bc)

xét tam giácACI vuông tại I có

AC^2=AI^2=IC^2(ĐL py-ta-go)

hay 15^2=9^2+AI^2

=>AI^2=225-81=144

=>AI=12(cm)

tam giác ABC có G là trọng tâm tam giác ABC ;AI là đường trung tuyến ứng với cạnh BC của tam giác ABC

=>IG=2/3AI=2/3.12=89(cm)