Cho tam giác ABC vuông tại A, đường cao AH, từ H kẻ đường thẳng vuông góc với AC tại K. Vẽ tia phân giác của \(\widehat{HAC}\)cắt HK tại I. từ I kẻ đường thẳng song song với BC cắt AC tại D. Chứng minh rằng: \(\widehat{AIH}=\widehat{AID}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
Mk làm đc binh nhiu thui =))
c)
vi KH//NM
=>goc KHM =goc HMB (goc so le trong) (*)
xet tam giac HMB
goc HMB + goc HBM=90 do (1)
xet tam giac NBA
goc ANB+ goc NBA =90 do (2)
mat khac goc HBM= goc NBA (3)
=>GOC HMB =goc ANB (*)
ma goc ANB=goc AKH (goc dong vi)(*)
ket hop 3( *) => tam giac AKH can tai A => AH=AK
K đúng cho mk nha!
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
giúp tớ với đag gấp lắm. Tớ cảm ơn