K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

a,Sin B=\(\frac{AC}{BC}=\)\(\frac{4}{5}=0.8\)

 Cos B=\(\frac{AB}{BC}=\frac{3}{5}=0,6\)

Tan B =\(\frac{AC}{AB}=\frac{4}{3}\)

Cot B=\(\frac{AB}{AC}=\frac{3}{4}=0,75\)

b,Vì sin B = 0,8 => B=53o

                         => C=37o(áp dụng hệ quả định lí tổng r tính)

a) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow AC^2=3^2+4^2=25\)

hay AC=5(cm)

Xét ΔABC vuông tại B có 

\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\dfrac{AB}{AC}=\dfrac{3}{5};\)

\(\tan\widehat{A}=\dfrac{BC}{BA}=\dfrac{4}{3};\cot\widehat{C}=\dfrac{BA}{BC}=\dfrac{3}{4}\)

23 tháng 9 2022

Áp dụng ĐLPTG, ta có:

AC²=AB²+BC²

<=>AC²=3²+4²=25

<=>AC=5(cm)

Xét tam giác ABC vuông tại B ta có:

Sin A=4/5     cos A=3/5    tg A=3/4      cost A=4/3

 

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

20 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)