K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

4E = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 40.41.42.4

4E = 1.2.3.4 + 2.3.4.( 5 - 1 ) + 3.4.5.( 6 - 2 ) + .. + 40.41.42.( 43 - 39 )

4E = 1.2.3.4 + 2.3.4.5 - 1.2.3.4.+ 3.4.5.6 - 2.3.4.5 + .. + 40.41.42.43 - 39.40.41.42

4E = 40.41.42.43

E = 10 . 41 . 42 . 43 = 740640

25 tháng 8 2017

4E = 1. 2 . 3 .4 + 2 . 3 . 4. 4 + 3. 4 . 5. 4 + ...+40 . 41. 42 . 4

4E = 1 . 2. 3. 4 + 2 . 3 . 4. 5 - 2. 3 .4 + 3 . 4. 5 . 6 - 3 . 4. 5 . 2  + ...+ 40 . 41. 42 . 43 - 40 . 41. 42 . 39

4E = 40 . 41. 42. 43 

  E = (40 . 41. 42. 43) : 4

TỰ BẤM MÁY TÍNH NỐT ! 

30 tháng 4 2016

Ta có E=1.2.3+2.3.4+3.4.5+....+100000.100001.100002 Vậy 4E=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+....+100000.1000001.100002.(100003-9999)

4E=100000.100001.100002.10003 Vậy E=25000.100001.100002.10003
Bài viết này chứng tỏ mang tính chất đánh đố toán ra chả viết số dài lê thê như thế

3 tháng 8 2015

4E=1.2.3.4+2.3.4.(5-1) + 3.4.5.(6-2)+....+96.97.98.(99-95) + 97.98.99.(100-96)

4E = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 +....+ 96.97.98.99 - 95.96.97.98 + 97.98.99.100 - 96.97.98.99

(Để ý những số này sẽ được lược bỏ)

4E= 97.98.99.100

=>E = 97.98.99.25 = 23527350

DD
3 tháng 8 2021

\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)

Suy ra \(E=A-B=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

4 tháng 8 2021

\(\frac{14949}{20200}\)

14 tháng 4 2019

\(E=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)

\(E=15\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(E=15\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(E=15\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(E=15.\frac{4949}{9900}\)

\(E=\frac{4949}{660}\)

Y
9 tháng 4 2019

+ \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\cdot\frac{2}{n\left(n+1\right)\left(n+2\right)}\) \(=\frac{1}{2}\cdot\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

Do đó : \(E=30\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\right)\)

\(E=30\cdot\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(E=15\cdot\left(\frac{1}{2}-\frac{1}{9900}\right)=15\cdot\frac{4949}{9900}=\frac{4949}{660}\)

7 tháng 5 2018

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

8 tháng 5 2018

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

4 tháng 10 2017

\(linh_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}\)

\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}\right)\)

\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{4.5}\right)\)

\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{2}.\dfrac{9}{20}=\dfrac{9}{40}\)

\(linh_2=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)

\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\)\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)\)

\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{90}\right)=\dfrac{1}{2}.\dfrac{22}{45}=\dfrac{11}{45}\)

4 tháng 10 2017

a/ \(G=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}\)

\(\Leftrightarrow2G=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}\)

\(\Leftrightarrow2G=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}\)

\(\Leftrightarrow2G=\dfrac{1}{1.2}-\dfrac{1}{4.5}\)

\(\Leftrightarrow2G=\dfrac{1}{2}-\dfrac{1}{20}\)

\(\Leftrightarrow2G=\dfrac{9}{20}\)

\(\Leftrightarrow G=\dfrac{9}{40}\)

b/ \(H=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.....+\dfrac{1}{8.9.10}\)

\(\Leftrightarrow2H=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+.....+\dfrac{2}{8.9.10}\)

\(\Leftrightarrow2H=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(\Leftrightarrow2H=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)

\(\Leftrightarrow2H=\dfrac{1}{2}-\dfrac{1}{90}\)

\(\Leftrightarrow2H=\dfrac{22}{45}\)

\(\Leftrightarrow H=\dfrac{22}{90}\)

29 tháng 11 2016

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)