Cho hai góc nhọn xOy và x'O'y' có các cạnh tương ứng Ox // O'x' , Oy // O'y'. Vẽ các tia Oz và O'z' lần lượt là phân giác của góc xOy và x'O'y'. Chứng tỏ :
a) Hai góc xOy và x'O'y' bằng nhau.
b) Oz // O'z'.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách vẽ:
- Từ O' vẽ O'x' //Ox.
- Từ O' Vẽ O'y' //Oy sao cho góc \(\widehat{x'O'y'}\) là góc nhọn. Ta được hai trường hợp hình vẽ sau:
Đo hai góc \(\widehat{xOy}\) và \(\widehat{x'O'y'}\) ta được \(\widehat{xOy}=\widehat{x'O'y'}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Chu vi đáy = (dài + rộng ) x 2
Sxq = Chu vi đáy x chiều cao
2) Diện tích toàn phần: Stp
Stp = Sxq + Sđáy x 2
Sđáy = dài x rộng
Lưu ý: Diện tích toàn phần thì tính luôn cả 6 mặt của hình hộp nhưng với trường hợp hình hộp mất đi một mặt đáy thì lúc đó công thức chỉ còn là:
Stp = Sxq + Sđáy