Chứng tỏ rằng
a,52016 + 52015 + 52014 chia hết cho 31
b,1+ 7+ 72+ 73+......+ 7101 chia hết cho 8
c,439 + 440 + 441 chia hết cho 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
Số chia hết cho 72 là chia hết cho 9 và 8.
Ta có 1028 + 8 = 100...0 (28 chữ số 0) + 8 có tổng các chữ số là 1 + 0 + ... +0 + 8 = 9 chia hết cho 9.
1028 + 8 có 3 chữ số tận cùng là 008 chia hết cho 8.
=> 1028 + 8 chia hết cho 72
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
a, 5^2016+5^2015+5^2014=5^2014x(5^2+5+1)=5^2014x 31=> chia hết cho 31
b, 1+7+7^2+7^3+...7^101= (1+7)+(7^2+7^3)+...+(7^100+7^101)=1x(1+7)+7^2x(1+7)+...+7^100x(1+7)=1x8+7^2x8+...+7^100x8
=8x(1+7^2+...7^100)=>chia hết cho 8
c,4^39+4^40+4^41=4^38x4+4^38x4^2+4^38x4^3=4^38x(4+16+64)=4^38x84=> chia hết cho 28
a/ 52016+52015+52014=52014(52+5+1)=31.52014 => Chia hết cho 31
b/ 1+7+72+73+...+7101 Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:
(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)
= (1+7)(1+72+...+7100)=8.(1+72+...+7100) => Chia hết cho 8
c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28
=> Chia hết cho 28