1) chứng tỏ rằng
a) 85+211 chia hết cho 17
b) 692-69.5 chia hết cho 32
c) 87-218 chia hết cho 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
87 - 218 = ( 23 )7 - 218= 221 - 218 = 218 ( 23 - 1 ) = 218 . 7 = 217 .2.7 = 217 . 14 ( chia hết cho 14 )
Vậy 87-218chia hết cho 14
Ta có: 8^5 + 2^11 = ( 2^3 )^5 + 2^11 = 2^15 + 2^11 = 2^11 * 2^4 + 2^11 * 1 = 2^11 * ( 16 + 1 ) = 2^11 * 17 chia hết cho 17
=> 8^5 + 2^11 chia hết cho 17
69^2 - 69 * 5 = 69 * 69 - 69 * 5 = 69 * ( 69 - 5 ) = 69 * 64 = 69 * 2 * 32 = 138 * 32 chia hết cho 32
=> 69^2 - 69 * 5 chia hết cho 32
8^7 - 2^18 = ( 2^3 )^7 - 2^18 = 2^21 - 2^18 = 2^18 * 2^3 - 2^18 * 1 = 2^18 * ( 8 - 1 ) = 2^17 * 2 * 7 = 2^17 * 14 chia hết cho 14
=> 8^7 - 2^18 chia hết cho 14
Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
a) 85+211 = ( 23)5+ 211= 215 + 211 = 211 ( 24+1) = 211(16+1) =( 211. 17 ) chia hết cho 17 => ........ ( kết luận )
b) 692-69.5 = 69 ( 69-5) = 69. 64 = (69.2.32) chia hết cho 32 => ....
c) 87-218 = (23)7 - 218 = 221-218 = 218( 23-1) = 217.2.7 = (217 .14) chia hết cho 14 => ...
a)
\(8^5=2^{15}\)
=> \(2^{11}+2^{15}\)
= \(2^{11}.1+2^{11}.2^4\)
= \(2^{11}.\left(1+2^4\right)\)
= \(2^{11}.17⋮17\)
Vậy ta có điều phải chứng minh !!!
b)
\(69^2-69.5\)
= \(69.69-69.5\)
= \(69.\left(69-5\right)\)
= \(69.64⋮32\)( Vì 64 \(⋮\)32 )
c)
\(8^7=2^{21}\)
=> \(2^{21}-2^{18}\)
= \(2^{17}.2^4-2^{17}.2\)
= \(2^{17}.\left(2^4-2\right)\)
= \(2^{17}.14⋮14\)
Vậy ta có điều phải chứng minh !!!
Ủng hộ mik nhá ^_^"