Cho S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
P=\(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...........+\frac{1}{2014}+\frac{1}{2015}\)
Tính (S-P)2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-1-\frac{1}{2}-...-\frac{1}{1007}\)
\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\) (đpcm)
Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)
Khi đó \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
Bạn xem lời giải của mình nhé:
Giải:
Bài 2:
Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)
Chúc bạn học tốt!
Ta có:
S - P = (1 - 1/2 + 1/3 -1/4+ ...+ 1/1007 - 1/1008 + ...+ 1/2013 - 1/2014 + 1/2015) - (1/1008 + 1/1009 + ...+1/2014 + 1/2015)
=1 - 1/2 + 1/3 - 1/4 + ... + 1007 -2/1008 - ... - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ...+ 1/1007 - 2/1008 - 2/1010 - ...- 2/2012 - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ....+ 1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/504 + 1/505 + ...+ 1/1005 - 1/1006 + 1/1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 2/504 - 2/506 - ..- 2/1006
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/252 - 1/253 - ...- 1/503
Lại tiếp tục như trên, Lẻ mất, chẵn còn => S - P = 0 => (S-P)2015=0
xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)
=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)
=2016/2015+2016/2014+...+2016/3+2016/2+1
=2016.(1/2016+1/2015+...+1/4+1/3+1/2)
=> A= 1/2016
mún dễ hỉu hơn hãy gửi tin nhắn cho mik
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(S=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow\left(S-P\right)^{2016}=\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{1009}-...-\frac{1}{2015}\right)^{2016}=0^{2016}=0\)
Ta thấy:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)+\frac{1}{2015}\)
\(S=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\) nên:
\(S=P\)\(\Rightarrow S-P=0\)\(\Rightarrow\left(S-P\right)^{2016}=0\)