K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97\cdot99}\)

\(=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{97}-\frac{2}{99}\right):2\)

\(=\left(2-\frac{2}{99}\right):2=\frac{98}{99}\)

8 tháng 7 2015

D = 1 - 1/3 + 1/3 - 1/5 + .... + 1/97 - 1/99

D = 1 - 1/99

D = 98/99

14 tháng 7 2015

2/1.3 + 2/3.5 + 2/5.7 +...+ 2/97.99 
=(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/97-1/99) 
=1-1/99=98/99 

 

15 tháng 12 2021

ko bt nha

29 tháng 4 2018

 \(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(A=\frac{1}{1}-\frac{1}{99}\)

\(A=\frac{98}{99}\)

29 tháng 4 2018

ta có A=1-1/3+1/2-1/5+..................1/95-1/97+1/97-1/99

        A=1-1/99

        A=98/99

11 tháng 3 2023

\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)

11 tháng 3 2023

\(\dfrac{2}{1\cdot3}=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)

\(\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{7}{35}-\dfrac{5}{35}=\dfrac{2}{35}\)

và cứ như thế đến số cuối

 

18 tháng 8 2021

a. \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3-1}{3}=\dfrac{2}{3}\)\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5-3}{15}=\dfrac{2}{15}\)

b. Ta có \(VP=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\) mà \(VP=\dfrac{2}{3}\) \(\Rightarrow VT=VP\)

Ta có \(VP=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\) mà \(VP=\dfrac{2}{3.5}=\dfrac{2}{15}\) \(\Rightarrow VT=VP\)

c. \(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)

\(=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}+\dfrac{1}{99.101}\right)\)

\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=2\left(1-\dfrac{1}{101}\right)\) \(=\dfrac{200}{101}\)

a: \(\dfrac{1}{1}-\dfrac{1}{3}=1-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)

b: \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)

c: Ta có: \(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)