Tính :
a, A = 1+2+3+...+(n-1)+n
b, B =1.2+2.3+3.4+...+99.100
Giải thích từng bước nhé ! cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1.2+1/2.3+1/3.4+..+1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
b: Tổng của N là:
\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)
a,A = 1+2+3+…+(n-1)+n
A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3
A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3
A = 99.100.101 A = 333300
Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3
a,số hạng của tổng là mở ngoặc 2n-1 đóng ngoặc chia 2+1 = mở ngoặc 2n-2 chia 2+1 = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1 = n-1+1=n vậy tổng là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ chia = n nhân mũ chia = n
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
a)\(A=\frac{n.\left(n+1\right)}{2}\)
b)B=1.2+2.3+3.4+...+99.100
=>B.3=1.2.3+2.3.3+3.4.3+...+99.100.3
=>B.3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>B.3=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=>B.3=99.100.101
=>\(=>B=\frac{99.100.101}{3}=\frac{999900}{2}=499950\)
a) không biết
b) B = 1.2 + 2.3 + 3.4 + ... + 99.100
3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101
= 99.100.101 = 999900
3.B = 999900
B = 333300
bình thường
Ta có : B = 1.2 + 2.3 + 3.4 + ...... + 99.100
<=> 3B = 1.2.3 + 0.1.2 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 99.100.101
<=> 3B = 99.100.101
<=> B = \(\frac{99.100.101}{3}=333300\)