cho 2 biểu thứ:
D=(a+c)-(b+d)
C=(a-d)+(c-b)
chứng tỏ D=C
giúp mk với,mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a-b+c\right)-\left(a+c\right)=a-b+c-a-c=-b\)
\(b,\left(a+b\right)-\left(b-a\right)+c=a+b-b+a+c=2a+c\)
\(c,-\left(a+b-c\right)+\left(a-b-c\right)=-a-b+c+a-b-c=-2b\)
\(d,a\left(b+c\right)-a\left(b+d\right)=ab+ac-ab-ad=ac-ad=a\left(c-d\right)\)
\(e,a\left(b-c\right)+a\left(d+c\right)=ab-ac+ad+ac=ab+ad=a\left(b+d\right)\)
a) (a - b + c) - (a + c)
= a - b + c - a - c
= (a - a) - b + (c - c)
= -b
b) (a + b) - (b - a) + c
= a + b - b + a + c
= 2a + (b - b) + c
= 2a + c
c) - (a + b - c) + (a - b - c)
= -a - b + c + a - b - c
= (-a + a) - (b + b) + (c - c)
= -2b
d) a(b + c) - a(b + d)
= ab + ac - ab - ad
= (ab - ab) + (ac - ad)
= ac - ad
= a(c - d)
e) a(b - c) + a(d + c)
= a(b - c + d + c)
= a[b - (c - c) + d]
= d(b + d)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=m\Rightarrow a=bm;c=dm\)
Ta có : \(\dfrac{a.b}{c.d}=\dfrac{b.m.b}{d.m.d}=\dfrac{b^2.m}{d^2.m}=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bm+b\right)^2}{\left(dm+d\right)^2}=\dfrac{\left[b.\left(m+1\right)\right]^2}{\left[d.\left(m+1\right)\right]^2}=\dfrac{b^2.\left(m+1\right)^2}{d^2.\left(m+1\right)^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra :\(\dfrac{a.b}{c.d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Vậy \(\dfrac{a.b}{c.d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) khi \(\dfrac{a}{b}=\dfrac{c}{d}\)
Đc chưa bạn . Tick cho mk nha!
Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó; ABCD là hình bình hành
=>AB=CD; AD=BC
1,
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\\ \Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\\ \Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\\ \Rightarrow\frac{b}{a-b}=\frac{d}{c-d}\)
2,
Có: \(\frac{x}{y}=1,5=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\)
Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)
Mà \(x\cdot y=24\)
\(\Rightarrow3k\cdot2k=24\\ \Rightarrow6k^2=24\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
+ Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=2\cdot2=4\end{matrix}\right.\)
+ Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot\left(-2\right)=-6\\y=2\cdot\left(-2\right)=-4\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(6;4\right);\left(-6;-4\right)\right\}\)
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
\(\Rightarrow\frac{b}{a-b}=\frac{d}{c-d}\left(đpcm\right).\)
b) Ta có: \(\frac{x}{y}=1,5.\)
Đổi \(1,5=\frac{3}{2}\)
\(\Rightarrow\frac{x}{y}=\frac{3}{2}.\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\) và \(x.y=24.\)
Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)
Có: \(x.y=24\)
=> \(3k.2k=24\)
=> \(6.k^2=24\)
=> \(k^2=24:6\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=2.2=4\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=2.\left(-2\right)=-4\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;4\right),\left(-6;-4\right).\)
Chúc bạn học tốt!
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\dfrac{a}{b}=\dfrac{c}{d}\) (đpcm)
cho tỉ lệ thức ab = cd
chứng minh rằng (2008a+2009c)(b+d)=(a+c)(2008+2009d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2008a+2009c}{a+c}=\frac{2008bk+2009dk}{bk+dk}=\frac{k\left(2008b+2009d\right)}{k\left(b+d\right)}=\frac{2008b+2009d}{b+d}\)
\(\Rightarrow\frac{2008a+2009c}{a+c}=\frac{2008b+2009d}{b+d}\Rightarrow\left(2008a+2009c\right)\left(b+d\right)=\left(a+c\right)\left(2008b+2009d\right)\)
=> ĐPCM
D = (a + c) - (b + d) = a + c - b - d = (a - d) + (c - b) = C
=> D = C
Chúc bạn học tốt.
\(D=\left(a+c\right)-\left(b+d\right)\)
\(=a+c-b-d\)(1)
\(C=\left(a-d\right)+\left(c-b\right)\)
\(=a-d+c-b\)
\(=a+c-b-d\)(2)
từ (1) và (2) => đpcm