Cho góc xOy = 70o , A thuộc Ox
Qua A kẻ Az. Sao cho Ax và Oy cùng nằm trên một nửa mặt phẳng bờ chứa tia Ox và xAz = 70o
a, Chứng minh Az song song Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
a, Vì \(\widehat{xOy}+\widehat{OAz}=140^0+40^0=180^0\) mà 2 góc này ở vị trí TCP nên Az//Oy
b, Gọi Om,On lần lượt là p/g \(\widehat{xOy};\widehat{OAt}\)
Ta có \(\widehat{OAt}=180^0-\widehat{OAz}=140^0\left(kề.bù\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{mOx}=\dfrac{1}{2}\widehat{xOy}=70^0\\\widehat{nAO}=\dfrac{1}{2}\widehat{OAt}=70^0\end{matrix}\right.\Rightarrow\widehat{mOx}=\widehat{nAO}\) mà 2 góc này ở vị trí SLT nên Om//On
Do đó 2 đg p/g của \(\widehat{xOy}\) và \(\widehat{OAt}\) song song vs nhau
a, Vì \(\widehat{OAz}+\widehat{xOy}=140^0+40^0=180^0\) mà 2 góc này ở vị trí tcp nên Az//Oy
b, Vì At đối Az nên \(\widehat{OAt}=180^0-\widehat{OAz}=140^0\left(kề.bù\right)\)
Gọi Om là p/g \(\widehat{xOy}\), On là p/g \(\widehat{OAt}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{mOx}=\dfrac{1}{2}\widehat{xOy}=70^0\\\widehat{OAn}=\dfrac{1}{2}\widehat{OAt}=70^0\end{matrix}\right.\\ \Rightarrow\widehat{mOx}=\widehat{OAn}\)
Do đó ta đc dpcm
\(A\). \(Vì\)\(O=145^0\)\(Â_1=35^0\)\(2\)\(góc\)\(này\)\(trong\)\(cùng\)\(phía\)
\(\Rightarrow Oy\)\(\text{//}\)\(Az\)
b.Phải là Vẽ tia Az' đối với tia Az. Chứng minh 2 đường thẳng phân giác của 2 góc xOy và oAz' // vs nhau chứ sao lại vuông góc
Nếu muốn vuông góc thì phải vẽ thêm tia đối của tia pg của góc OAz' (đặt tia đối đó là Am) khi đó tia đối của OAz' vuông góc vs tia đối của OAm
Tu lam di may, toan don gian ma lam ko dc
Hey , bạn Hero Mavel thô lỗ rồi , ko làm đc thì người ta mới hỏi chớ !!!