ai giúp mk câu này với (n^2+3n+1)^2-1 chia hết cho 24 với mọi n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3n+24⋮n-4\)
\(\Leftrightarrow3n-12+36⋮n-4\)
mà \(3n-12⋮n-4\)
nên \(36⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(36\right)\)
\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
Vậy: \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có
�
4
+
2
�
3
−
�
2
−
2
�
=
�
2
(
�
2
−
1
)
+
2
�
(
�
2
−
1
)
n
4
+2n
3
−n
2
−2n=n
2
(n
2
−1)+2n(n
2
−1)
=
(
�
2
−
1
)
(
�
2
+
2
)
=
(
�
−
1
)
�
(
�
+
1
)
(
�
+
2
)
=(n
2
−1)(n
2
+2)=(n−1)n(n+1)(n+2)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Đúng ko nek
+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3
=> (4n + 3)2 chia 3 dư 1 (1)
+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)2 chia 8 dư 1 (2)
Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1
Mà 25 chia 24 dư 1
=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)
a, 3 chia hết cho n+1.
=> n + 1 thuộc Ư(3) = {-1;1;-3;3}
=> n = {-2;0;-4;2}
Câu a nha
=> n + 1 thuộc Ư(3) = {-1;1;-3;3}
=> n = {-2;0;-4;2}
a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)
=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)
mà (2;3)=1
=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)
b)Ta có:
a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a
cái này có phải đề sai k vậy bạn
a) ta có: n + 15 chia hết cho n + 1
=> n+1+14 chia chia hết cho n + 1
...
b) ta có: 2n+10 chia hết cho n + 2
2n+4+6 chia hết cho n + 2
2.(n+2) + 6 chia hết cho n + 2
...
c) ta có: 3n + 14 chia hết cho n - 1
3n - 3 + 17 chia hết cho n - 1
=> 3.(n-1) + 17 chia hết cho n - 1
...
Ta có: n + 15 = (n+1) + 14
Vì \(n+1⋮n+1\)nên để \(\left(n+1\right)+14⋮n+1\) thì \(14⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(14\right)\)
\(\Rightarrow\left(n+1\right)\in\left\{1;2;7;14\right\}\)
Tương ứng \(n\in\left(0;1;6;13\right)\)(t/m)
Vậy \(n\in\left(0;1;6;13\right)\)
b) Ta có: 2n + 10 = 2n + 4 + 6 = 2(n+2) + 6
Vì \(2\left(n+2\right)⋮n+2\)nên để \(\text{ 2(n+2) + 6 }⋮n+2\)thì \(\text{ 6 }⋮n+2\)
\(\Rightarrow\left(n+2\right)\inƯ\left(6\right)\)
Làm tiếp như ý a)
c) Ta có: 3n + 14 = 3n - 3 + 17 = 3(n-1) + 17
Vì \(3\left(n-1\right)⋮n-1\)nên để \(3\left(n-1\right)+17⋮n-1\)thì \(17⋮n-1\)
=> n-1 là ước nguyên của 17
\(\Rightarrow\left(n-1\right)\in\left\{1;-1;17;-17\right\}\)
mà \(n\inℕ\)
nên tương ứng \(n\in\left\{2;0;18\right\}\)(t/m)
Vậy \(n\in\left\{2;0;18\right\}\)
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Theo đề bài ta có :
\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)
= \(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)
Ta Thấy :
\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp
Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)
Tích của 2 số tự nhiên liên tiếp chia hết cho 2
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)