\(\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-1}{\sqrt{x}+3}+\frac{x-11\sqrt{x}-7}{x+\sqrt{x}-6}\)
rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne3;x\ne-3\)
Biểu thức = \(\frac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) =\(\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{3\sqrt{x}}{\sqrt{x}-3}\)
Điều kiện : \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{1}{1+\sqrt{x}}\right):\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(A=\frac{1}{1+\sqrt{x}}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{1+\sqrt{x}}\)
A=(x+x+yy−xy):(xy+yx+xy−xy−xyx+y)
=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}=x+yx+xy+y−xy:xy(xy+y)(xy−x)x(xy−x)xy+y(xy+y)xy−(x+y)(xy+y)(xy−x)
=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}=x+yx+y:xy2−x2yx2y−x2xy+xy2+y2xy−y2xy+x2xy
=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}=x+yx+y.xy2+x2yxy2−x2y
=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}=x+yx+y.xy(x+y)xy(y−x)(x+y)
=\sqrt{y}-\sqrt{x}=y−x
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
\(a,E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne\pm1\right)\)(Đề như này mới đúng!)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x-2\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{7\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{5\sqrt{x}+2\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(5\sqrt{x}-5x\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
Vậy...
\(b,\)Ta có:\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-15+17-5\sqrt{x}}{\sqrt{x}+3}=\frac{\left(-15-5\sqrt{x}\right)+17}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Vì \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\Rightarrow-5+\frac{17}{\sqrt{x}+3}\le\frac{2}{3}\Rightarrow E\le\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(C=\left(\frac{x}{x+3\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{x+1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}=1\)