K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

5 tháng 9 2020

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)

8 tháng 12 2017

struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }

23 tháng 4 2021

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

28 tháng 5 2021

a) Ta có: 33=32.3=9.3=27

Vì 27>12 nên 33>12

Vậy 33>12.
b) Ta có: 35=32.5=45

7=72=49

Vì 49>45 nên 7>35

Vậy 7>35.

c) Ta có: 1351=(13)2.51=519

15150=(15)2.150=15025=6=6.99=549

Vì 549>519 nên 1351<15150

Vậy 1351<15150.

d) Ta có: 126=(12)2.6=64

=32=3.12=3.12

Vì 3.12<612 nên 12.6<612

Vậy 126<612.

2 tháng 2 2016

Bạn vào câu hỏi tương tự xem mẫu rồi tự làm nhé

2 tháng 2 2016

thôi thì tính tay cũng được

31 tháng 1 2016

anh đã trở lại

ai chơi gunny ko

mk biết là hơi lỗi thời nhưng ai chơi thì kết bạn và mk nhé các gunner

31 tháng 1 2016

thế coái bắn bang bang hay liên minh ko

em ko biết làm ạ!!!

1 tháng 2 2016

Ta thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(\left(\sqrt{a+b}\right)^2=a+b\)

Nếu: \(2\sqrt{ab}>0\left(a,b>0\right)\text{ thì: }\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)

<=>\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

\(B=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+....+\frac{1}{\sqrt{2013}+\sqrt{2015}}\)

\(=\frac{1}{2}.\left(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+...+\frac{2}{\sqrt{2013}-\sqrt{2014}}\right)\)

\(=\frac{1}{2}.\left(-1+\sqrt{3}-\sqrt{3}+\sqrt{5}-...-\sqrt{2013}+\sqrt{2015}\right)\)

=\(\frac{\sqrt{2015}-1}{2}\)

Xét hiệu: B-A=\(\frac{\sqrt{2015}-1}{2}-\sqrt{481}=\frac{\sqrt{2015}-1}{2}-\frac{\sqrt{1924}}{2}=\frac{\sqrt{2015}-\left(\sqrt{1}+\sqrt{1924}\right)}{2}>\frac{\sqrt{2015}-\sqrt{1+1924}}{2}\)

\(=\frac{\sqrt{2015}-\sqrt{1925}}{2}>0\Rightarrow A>B\)

1 tháng 2 2016

bỏ tên tui đi tui ráng suy nghĩ