Tính nhanh
\(\frac{5}{11x16}+\frac{5}{16x21}+.........+\frac{5}{61x66}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(C=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+......+\frac{2}{41.42}\)
\(C=2\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{41.42}\right)\)
\(C=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{41}-\frac{1}{42}\right)\)
\(C=2\left(\frac{1}{3}-\frac{1}{42}\right)\)
\(C=2.\frac{13}{42}=\frac{13}{21}\)
\(C=\frac{1}{11\cdot16}+\frac{1}{16\cdot21}+...+\frac{1}{61\cdot66}=\frac{5}{5}\cdot\left(\frac{1}{11\cdot16}+\frac{1}{16\cdot21}+...+\frac{1}{61\cdot66}\right)\)
\(=\frac{1}{5}\cdot\left(\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+...+\frac{5}{61\cdot66}\right)=\frac{1}{5}\cdot\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\cdot\left[\left(\frac{1}{11}-\frac{1}{66}\right)+\left(\frac{1}{16}-\frac{1}{16}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)\right]\)
\(=\frac{1}{5}\cdot\left[\left(\frac{6}{66}-\frac{1}{66}\right)+0+...+0\right]=\frac{1}{5}\cdot\frac{5}{66}=\frac{1\cdot5}{5\cdot66}=\frac{1\cdot1}{1\cdot66}=\frac{1}{66}\)
Vậy \(C=\frac{1}{66}\)
Chúc bạn học tốt!^_^
E=\(\frac{1}{5}\).(\(\frac{1}{11}-\frac{1}{16}\)+\(\frac{1}{16}-\frac{1}{21}+\frac{1}{21}+\frac{1}{26}+....+\frac{1}{61}-\frac{1}{66}\))
E=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)=\(\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)
\(E=\frac{1}{11x16}+\frac{1}{16x21}+\frac{1}{21x26}+...+\frac{1}{61x66}\)
\(E=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}+\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(E=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(E=\frac{1}{5}.\frac{5}{66}\)
\(E=\frac{1}{66}\)
a) \(\frac{2}{11x16}+\frac{2}{16x21}+...+\frac{2}{61x66}\)
\(=\frac{2}{5}x\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{2}{5}x\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{2}{5}x\frac{5}{66}\)
\(=\frac{1}{33}\)
b) \(\frac{2}{5x7}+\frac{4}{7x11}+\frac{3}{11x14}+\frac{4}{14x18}+\frac{5}{18x23}+\frac{7}{23x30}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(=\frac{1}{5}-\frac{1}{30}\)
\(=\frac{1}{6}\)
a, \(\frac{2}{11\times16}+\frac{2}{16\times21}+...+\frac{2}{61\times66}\)
\(=\frac{2}{5}\times\left(\frac{5}{11\times16}+...+\frac{5}{61\times66}\right)\)
\(=\frac{2}{5}\times\left(\frac{1}{11}-\frac{1}{16}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{2}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{2}{5}\times\frac{5}{66}\)
\(=\frac{1}{33}\)
Vậy giá trị của biểu thức trên là : \(\frac{1}{33}\)
b,\(\frac{2}{5\times7}+\frac{4}{7\times11}+\frac{3}{11\times14}+\frac{4}{14\times18}+\frac{5}{18\times23}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}\)
\(=\frac{1}{5}-\frac{1}{23}\)
\(=\frac{18}{115}\)
Vậy giá trị của biểu thức trên là \(\frac{18}{115}\)
\(S=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}\)
\(S=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}\)
\(S=5\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+\frac{5}{21\cdot26}\right]\)
\(S=5\left[1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right]\)
\(S=5\left[1-\frac{1}{26}\right]=5\cdot\frac{25}{26}=\frac{125}{26}\)
Bài làm
S = \(\frac{5^2}{1.6}\)+ \(\frac{5^2}{6.11}\)+ \(\frac{5^2}{11.16}\)+ \(\frac{5^2}{16.21}\)+\(\frac{5^2}{21.26}\)
S : 5 = \(\frac{5}{1.6}\)+ \(\frac{5}{6.11}\)+ \(\frac{5}{11.16}\) + \(\frac{5}{16.21}\) + \(\frac{5}{21.26}\)
S : 5 = 1 - \(\frac{1}{6}\)+ \(\frac{1}{6}\)- \(\frac{1}{11}\) + \(\frac{1}{11}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{21}\)+ \(\frac{1}{21}\)- \(\frac{1}{26}\)
S : 5 = 1 - \(\frac{1}{26}\)
S : 5 = \(\frac{25}{26}\)
S = \(\frac{125}{26}\)
\(A=\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{61\times66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
\(A=11\left(\frac{5}{11.6}+\frac{5}{16.21}+......+\frac{5}{36.41}\right)\)
\(=11\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+.....+\frac{1}{36}-\frac{1}{41}\right)\)
\(=11\left(\frac{1}{11}-\frac{1}{41}\right)\)
\(=11.\frac{30}{451}=\frac{30}{41}\)
\(A=\frac{10}{11.16}+\frac{10}{16.21}+...+\frac{10}{61.66}\)
\(A=\frac{10}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(A=\frac{10}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(A=\frac{10}{5}\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{10}{5}.\frac{5}{66}=\frac{5}{33}\)
Vậy A =5/33
\(\frac{5}{11x16}+\frac{5}{16x21}+...+\frac{5}{61x66}\)
\(=\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)
\(=\frac{5}{11}-\frac{5}{66}+0+...+0\)
\(=\frac{25}{66}\)
~ Ủng hộ nhé anh chị em ~
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}+\left(\frac{1}{16}-\frac{1}{16}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)-\frac{1}{21}\)
\(=\frac{1}{11}-\frac{1}{21}\)
\(=\frac{21}{231}-\frac{11}{231}\)
\(=\frac{10}{231}\)