K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
9 tháng 4 2021

A = 100* => B^ = C^ = 40* 
trên CA lấy điểm E sao cho CB = CE 
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20* 
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10* 
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70* 
=>MEB^ = 60* (1) 
ΔCBM = Δ CEM => MB = ME (2) 
(1) và (2) => BME là tam giác đều MB = BE (1*) 
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30* 
ABE^ = CBE^ - ABC^ = 70* - 40* = 30* 
=> ABM^ = ABE^ (2*) 
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung) 
=> AMB^ = AEB^ = 70*