Chứng minh rằng số A=(n+1).(3.n+2) luôn chia hết cho 2 với mọi số tự nhiên n (.là dấu nhân)
Giúp mình lẹ nha mình đang cần gấp .Mình cảm ơn trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
kết quả là:
Nếu n + 3 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n + 6 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2
Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2
tk tôi nha
ta có n(n+5)-(n-3)(n+2)
= n2+5n-(n2-n-6)
=n2+5n-n2+n+6
= 6n-6
=6(n-1)
=> 6(n-1) chia hết cho 6
hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6
nhớ k giùm mình nha
Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!
......................?
mik ko biết
mong bn thông cảm
nha ................