K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

- Nếu n chẵn thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

- Nếu n lẻ thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

Do đó  \(\forall n\in N\)    thì A chẵn, mà A là số nguyên tố  => A = 2

Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)

\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)

\(\Leftrightarrow3n^3-6n^2+3n-8=0\)

Mà  \(n\in N\)  nên ko tìm đc giá trị của n để A là số nguyên tố.

2 tháng 7 2017

Đề bài hay nhỉ :3
A là SNT
-> A= 3((n^2+1)n-3(n^2+1)) -> A=3 
-> n^3+n-2n^2-2=1
-> Không n thỏa mãn 
-> Kết luận có A nguyên tố nhưng n không nguyên nên tha cho em bài này :vv

25 tháng 4 2016

em mới học lớp 5 thui !!!

mk ko giỏi mấy cái này bn ak!!!! #_#

5756876980

31 tháng 3 2019

mik cần gấp

a: để P là số nguyên thì \(3n-3+5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)

\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)

\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

6 tháng 4 2023

`a)` Ptr `(1)` có nghiệm `<=>[-(n-1)]^2-(-n-3) >= 0`

              `<=>n^2-2n+1+n+3 >= 0<=>n^2-n+4 >= 0` (LĐ `AA n`)

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

Ta có: `x_1 ^2+x_2 ^2=10`

`<=>(x_1+x_2)^2-2x_1.x_2=10`

`<=>(2n-2)^2-2.(-n-3)=10`

`<=>4n^2-8n+4+2n+6-10=0`

`<=>[(n=3/2),(n=0):}`

`b)` Có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

`<=>{(x_1+x_2=2n-2),(2x_1.x_2=-2n-3):}`

  `=>x_1+x_2+2x_1.x_2=-5`