Rút gọn biểu thức
B=3x(2^2+1)x(2^4+1)x(2^8+1).........(2^64+1)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)
b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)
\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)
\(\Leftrightarrow2x\sqrt{2}=-4\)
hay \(x=-\sqrt{2}\)
b: \(=\left(x^2+3x+1-3x+1\right)^2=\left(x^2+2\right)^2\)
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.
B = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.