Cho Tam giác ABC vuông tại A . Vẽ AH vuông góc vơi BC (H thuộc BC) . Tia phân giác góc BAH cắt BH ở D . Chứng minh rằng góc CAD = góc CAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ADH\)vuông tại H có \(\widehat{ADH}=90^0-\widehat{DAH}\) (1)
Mà \(\widehat{DAH}=\widehat{BAD}\) ( vì AD là tia phân giác của\(\widehat{BAH}\))
\(\Rightarrow\widehat{ADH}=90^0-\widehat{BAD}\). Mà \(90^0-\widehat{BAD}=\widehat{DAC}\)(2)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{ADH}=\widehat{DAC}\)
\(\Rightarrow\Delta CAD\)cân tại C
b) Vì \(\Delta CAD\)cân tại C ( cm ở ý a )\(\Rightarrow\widehat{CAD}=\frac{180^0-\widehat{C}}{2}\)( *)
Ta có :\(CH=CK\Rightarrow\Delta CHK\)cân tại C \(\Rightarrow\widehat{CKH}=\frac{180^0-\widehat{C}}{2}\)(**)
Từ (*) và (**) \(\Rightarrow\widehat{CAD}=\widehat{CKH}\)
Mà \(\widehat{CAD}\)và\(\widehat{CKH}\)là 2 góc đồng vị
\(\Rightarrow\)AD song song HK
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Đề bài có vấn đề bạn ơi, cái chỗ yêu cầu nó sai sai.
Cho mình xin lỗi . Sửa lại là chứng minh góc CAD = góc CDA