Cho x,y >0 thỏa mãn 1+x+y=\(\sqrt{x}+\sqrt{y}+\sqrt{xy}\).Tình giá trị biếu thức P=\(\left(x-\sqrt{x}+1\right)^{2017}+\left(y-\sqrt{y}+1\right)^{2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$xy+\sqrt{(1+x^2)(1+y^2)}=1$
$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$
$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)
$\Leftrightarrow x^2+y^2=-2xy$
$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.
Khi đó:
$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$
$=1+x^2-x^2=1$
Phân tích cái trên thành hằng đẳng thức bậc 2 là đc, tìm ra x;y;z rồi thay vào M
làm rõ ra cho tớ được không? Không hiểu sao tớ phân tích không ra :((
Thay \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) ta có
\(1+x=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
Tương tự \(1+y=\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\) và \(1+z=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)
và \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)
\(=\frac{\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{z}+\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
\(=\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
Do đó P = 2
AM-GM cho cái gt =>x=y=z=1 thay vào
nhầm r bác