K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2021

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)

11 tháng 5 2021

Với mọi số thực ta luôn có:

`(a-b)^2+(b-c)^2+(c-a)^2>=0`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`

`<=>a^2+b^2+c^2>=4/3`

Dấu "=" xảy ra khi `a=b=c=2/3`

~Quang Anh Vũ~

2 tháng 6 2016
  • \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=\left(a+b+c\right)^2-6.\)
  • \(P=\left(a+b+c\right)^2-6-6\left(a+b+c\right)+2017=\left(a+b+c\right)^2-6\left(a+b+c\right)+9+2002\)

\(=\left(a+b+c-3\right)^2+2002\)

  • Mà \(\left(a+b+c-3\right)^2\ge0\)nên GTNN của P bằng 2002.
3 tháng 6 2016

đúng rồi đấy

NV
27 tháng 7 2021

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)

7 tháng 12 2020

bạn kiểm tra lại xem có sai đề không

NV
18 tháng 8 2021

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

18 tháng 8 2021

con cảm ơn thầy ah.