phân tích đa thức thành nhân tử
a)x\(^3\)y-y
b)x\(^3\)y+y
c)(x-y)\(^2\)-x(y-x)
giúp tớ vs đang cần gấp+))))))))))))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
~ Chúc bạn học tốt~
a: \(=-x^2y\cdot x+x^2y\cdot y=x^2y\left(-x+y\right)\)
b: \(=-xy^2\cdot x^2-xy^2\cdot z=-xy^2\left(x^2+z\right)\)
c: x^2y^3-xy^2
=xy^2*xy-xy^2
=xy^2(xy-1)
d: -x^3z-z
=z(-x^3-1)
=-z(x+1)(x^2-x+1)
e: =x(x-y)+(x-y)
=(x-y)(x+1)
n: =x^2(x-1)-(x-1)
=(x-1)(x^2-1)
=(x-1)^2(x+1)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
h) \(y\left(y-x\right)^3-x\left(x-y\right)^2+xy\left(x-y\right)=y\left(y-x\right)^3-x\left(y-x\right)^2-xy\left(y-x\right)=\left(y-x\right)\left[y\left(y-x\right)^2-x-xy\right]=\left(y-x\right)\left[y\left(y^2-2xy+x^2\right)-x-xy\right]=\left(y-x\right)\left(y^3-2xy^2+x^2y-x-xy\right)\)
i) \(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2=10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(a-2b\right)^2=\left(a-2b\right)^2\left(10x^2-x^2-2\right)=\left(a-2b\right)^2\left(9x^2-2\right)\)
\(\left(x-y\right)^3-x^3+y^3=\left(x-y\right)^3-\left(x^3-y^3\right)=\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2-2xy+y^2-x^2-xy-y^2\right)=-3xy\left(x-y\right)\)
\(\left(x-y\right)^3-x^3+y^3\\ =\left(x-y\right)^3-\left(x^3-y^3\right)\\ =\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)\\ =\left(x-y\right)\left[\left(x-y\right)^2-\left(x^2+xy+y^2\right)\right]\\ =\left(x-y\right)\left(x^2-2xy+y^2-x^2-xy-y^2\right)\\ =\left(-3xy\right)\left(x-y\right)\)
\(a,\)
\(x^3y-y\)
\(=y\left(x^3-1\right)\)
\(=y\left[\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=y\left(x-1\right)\left(x^2+x+1\right)\)
\(b,\)
\(x^3y+y\)
\(=y\left(x^3+1\right)\)
\(=y\left[\left(x+1\right)\left(x^2-x+1\right)\right]\)
\(=y\left(x+1\right)\left(x^2-x+1\right)\)
\(c,\)
\(\left(x-y\right)^2-x\left(y-x\right)\)
\(=\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+x\right)\)
\(=\left(x-y\right)\left(2x-y\right)\)
cảm ơn ccau nha