Cho tam giác abc vuông tại A, AH vuông góc BC, HE vuông góc AB, HF vuông góc AC. Gọi I, J là trung điểm BH, CH. Chứng minh IE, IF là tiếp tuyến tâm O và IE song song JF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc AFH=góc AEH=góc FAE=90 độ
=>AEHF là hình chữ nhật
góc JFE=góc JFH+góc EFH
=góc JHF+góc EAH
=góc HBA+góc HAB=90 độ
=>JF là tiếp tuyến của (O)
góc IEF=góc IEH+góc FEH
=góc IHE+góc FAH
=góc HAC+góc HCA=90 độ
=>IE là tiếp tuyến của (O)
=>IE//FJ
Trả lời:
P/s: Xin lỗi nha!~Chỉ đc mỗi câu a!!!~
a) Theo giả thiết ta có :
AH là đường trung tuyến ⇒BH=HC⇒BH=HC
xét ΔAHBΔAHB và ΔAHCΔAHC có:
AB=ACAB=AC (gt)
AHAH chung
BH=HCBH=HC ( cmt)
⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )
~Học tốt!~
b , Ta có : HB +HC= Bc
mà : HB=HC (GT)
=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2
Ta có : \(\Delta ABH\)vuông tại H
=> \(AB^2\)= \(BH^2\)+ \(AH^2\)( Định lí Py-ta-go)
=> 62 = 22 + AH2
=> AH2 = 62 - 22
=> AH2 = 32
=> AH \(\approx\) 5,7 cm
O là giao của AH và EF
\(AF\perp AB;HE\perp AB\) => AF//HE
\(AE\perp AC;HF\perp AC\) => AE//HF
=> AEHF là hình bình hành mà \(\widehat{A}=90^o\) => AEHF là HCN
\(\Rightarrow AH=EF\) (trong HCN hai đường chéo băng nhau)
\(OA=OH;OE=OF\) (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> OE=OH => tg OEH cân tại O
Vì AEHF là HCN nên
\(\widehat{EAF}=\widehat{EHF}=90^o\) => A và H cùng nhìn EF dưới 1 góc vuông => AEHF là tứ giác nội tiếp đường tròn tâm O bán kính EF
Xét tg vuông BEH có
IB=IH (gt) \(\Rightarrow IE=IB=IH=\dfrac{BH}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg IEH cân tại I \(\Rightarrow\widehat{IEH}=\widehat{IHE}\) (1)
tg OEH cân tại O (cmt) \(\Rightarrow\widehat{OEH}=\widehat{OHE}\) (2)
Mà \(\widehat{IHE}+\widehat{OHE}=\widehat{AHB}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{IEH}+\widehat{OEH}=\widehat{FEI}=90^o\)
\(\Rightarrow IE\perp EF\) mà EF là đường kính (O) => IE là tiếp tuyến đường tròn (O).
C/m tương tự ta cũng có \(JF\perp EF\) => JF cũng là tiếp tuyến với (O)
=> IE//JF (cùng vuông góc với EF)