Cho tam giác ABC nhọn (AB<AC) có đg cao AH và nội tiếp (O). Gọi E,F lần lượt là hình chiếu của H lên các cạnh AB,AC. Đường kính AD của (O) cắt EF tại K và DH cắt (O) tại L (L khác D).
a) cm: AEHF và ALHF là tứ giác nội tiếp
b) cm: BÈC là tứ giác nội tiếp và AD vuông góc EF tại K
c) Tia FE cắt (O) tại P và cắt BC tại M. cm: AP=AH và A,L,M thẳng hàng
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: AEHF nội tiếp
=>góc AEF=góc AHF=góc ACH
=>góc FEB+góc FCB=180 độ
=>BEFC nội tiếp
Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AFE
=>FE//Ax
=>AD vuông góc FE