Cho tam giác ABC vuông tại A đường cao AH. Biết AH=a, AB=2AC a)tính các cạnh của tam giác theo a b) Cho M là trung điểm BC. Tính MH, AM c) Kẻ đường thẳng vuông góc với AM tại M, cắt AB, AC tại E, F. Tính AE, AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)
AB = 6; AC = 8
=> 6^2 + 8^2 = BC^2
=> BC^2 = 100
=> BC = 10 do BC > 0
Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2
=> AM = 10 : 2 = 5
b, xét tam giác BEC có : EM là trung tuyến
EM là đường cao
=> tam giác BEC cân tại E (định lí)
1:
a: \(BC=\sqrt{6^2+8^2}=10cm\)
=>AM=10/2=5cm
b: Xét ΔEBC có
EM vừa là đường cao, vừa là trung tuyến
=>ΔEBC cân tại E
Bài 2:
Xét ΔBAE vuông tại A và ΔBHE vuông tại H co
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
a: AB=2AC
AB^2/AC^2=BH/HC
=>BH/HC=2^2=4
=>BH=4HC
AH^2=HB*HC
=>4HC^2=a^2
=>HC=a/2
=>BH=4*a/2=2a
BC=2a+a/2=5/2*a
\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)
\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)
b: AM=BC/2=5/4a
MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a