K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giácABC vuông tại A, đường cao AH. Cho HB = 25cm, HC = 64cm.                                                                                              a) Tính chu vi và diện tích tam giác ABC                                                                                                                                                        b) Tính góc B, góc C                                                                                                                    ...
Đọc tiếp

Cho tam giácABC vuông tại A, đường cao AH. Cho HB = 25cm, HC = 64cm.                                                                                              a) Tính chu vi và diện tích tam giác ABC                                                                                                                                                        b) Tính góc B, góc C                                                                                                                                                                                       c) Kẻ HM vuông góc AB, HN vuông góc AC. Tính MN

1

a: BC=25+64=89cm

AH=căn 25*64=40cm

S ABC=1/2*40*89=1780cm2

AB=căn 25*89=5căn 89cm

AC=căn 64*89=8 căn 89

=>C=13căn 89+89(cm)

b: tan B=AC/AB=8/5

=>góc B=58 độ

=>góc C=32 độ

c:

góc AMH=góc ANH=góc MAN=90 độ nên AMHN là hcn

=>MN=AH=40cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=40cm\\AC=8\sqrt{89}cm\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(\sin\widehat{C}=\dfrac{AH}{AC}=\dfrac{5}{\sqrt{89}}\)

\(\Leftrightarrow\widehat{C}\simeq32^0\)

hay \(\widehat{B}=58^0\)

11 tháng 6 2017

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

A H 2 = H B . H C

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 6 2019

Tam giác ABC vuông ở A, ta có:

       AH= 25.64 = 1600, suy ra AH = 40 (cm).

\(tgB=\frac{AH}{BH}=\frac{40}{25}=1,6\)

=>     \(\widehat{B}\approx58^0\);  \(\widehat{C}=32^0\).

hình đây nha 

A B C

Ta có : AH^2 = CH . HB
=>AH=40
Ta lại có:tan B = AH / HB=40/25=1.6
=>B = 580
=>C = 320

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

4 tháng 10 2021

undefined