Bài 1: Tìm x biết:
a. \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
b. \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+..+\frac{4}{41.45}=\frac{29}{45}\)
c. \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+2\right)}:2\)
d. (x-20) . \(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2000}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
Bài 2:
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\right)\in Nsao\)
Bài 3:
a)\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
b) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
c) \(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
d) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)