2 tổ cùng làm chung 1 công việc trong 4 giờ thì làm được 2 phần 3 công viêc.Nếu để mỗi tổ làm riêng thi tổ 1 sẽ làm xong trước tổ 2 là 5 giờ.Hỏi để làm xong công việc đó thì mỗi tổ phải làm trong bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là lượng công việc mà tổ (I) làm trong 1h, y là lượng công việc mà tổ (II) làm trong 1h
Mà tổ (I) và (II) cùng làm với nhau trong 12h thì xong 11 công việc nên ta có phương trình:
12(x+y)=112(x+y)=1 (1)
Mặt khác 2 tổ cùng làm trong 4h thì tổ (I) đi làm việc khác và tổ (II) làm nốt trong 10h nữa thì xong công việc nên ta có phương trình:
4(x+y)+10y=14(x+y)+10y=1 (2)
Kết hợp phương trình (1) và phương trình (2) ta có hệ phương trình:
12(x+y)=1
4(x+y)+10y=1
Giải HPT ta được x=1/ 60 và y=1/15
⇒⇒ Tổ (I) làm một mình trong 60h thì xong công việc.
Tổ (II) làm một mình trong 15h thì xong công việc.
Bn tham khảo nha
Gọi a(giờ) và b(giờ) lần lượt là thời gian tổ 1 và tổ 2 hoàn thành công việc khi làm riêng(Điều kiện: a>12; b>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{a}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{b}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\)(1)
Vì khi 2 tổ cùng làm trong 4 giờ thì tổ 1 được điều đi làm việc khác và tổ 2 làm nốt trong 10 giờ thì xong công việc nên ta có phương trình:
\(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{10}{b}=1\)
\(\Leftrightarrow\dfrac{4}{a}+\dfrac{14}{b}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+\dfrac{4}{b}=\dfrac{1}{3}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-10}{b}=\dfrac{-2}{3}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-30}{-2}=15\\\dfrac{1}{a}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\\b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm riêng
Tổ 2 cần 15 giờ để hoàn thành công việc khi làm riêng
Gọi thời gian làm riêng hoàn thành công việc 2 tổ công nhân lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{14}{a}+\dfrac{4}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{15}\\\dfrac{1}{b}=\dfrac{1}{60}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=15\\b=60\end{matrix}\right.\)(tm)
Vậy...
1 giờ tổ 1 làm được số phần công việc là:
1:3=\(\frac{1}{3}\)(phần)
1 giờ tổ 2 làm được số phần công việc là:
1:4=\(\frac{1}{4}\)(phần)
1 giờ cả hai tổ làm được số phần công việc là:
\(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(phần)
Cả hai tổ hoàn thành trong số giờ là:
\(\frac{7}{12}:1=\frac{12}{7}\)(giờ)
Đáp số:\(\frac{12}{7}\)giờ
Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h) (ĐK: x, y > 0)
Một giờ tổ 1 làm được: \(\dfrac{1}{x}\) (Công việc)
Một giờ tổ 2 làm được: \(\dfrac{1}{y}\) (Công việc)
Một giờ cả hai tổ làm được: \(\dfrac{1}{12}\) (Công việc)
Vì một giờ cả hai tổ làm được \(\dfrac{1}{12}\) công việc nên ta có pt:
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\) (1)
Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: \(\dfrac{4}{x}\) (Công việc)
Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: \(\dfrac{4}{y}+\dfrac{10}{y}=\dfrac{14}{y}\) (Công việc)
Vì hai tổ làm xong 1 công việc nên ta có pt:
\(\dfrac{4}{x}+\dfrac{14}{y}=1\) (2)
Từ (1) và (2) ta có hpt:
(I) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)
Giải hpt:
(I) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{1}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-\dfrac{10}{y}=\dfrac{-2}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}+\dfrac{14}{15}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}=\dfrac{1}{15}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\) (TM)
Vậy tổ 1 làm một mình trong 60h thì xong công việc đó
tổ 2 làm một mình trong 15h thì xong công việc đó
Chúc bn học tốt!
Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h) (ĐK: x, y > 0)
Một giờ tổ 1 làm được: (Công việc)
Một giờ tổ 2 làm được: (Công việc)
Một giờ cả hai tổ làm được: (Công việc)
Vì một giờ cả hai tổ làm được công việc nên ta có pt:
(1)
Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: (Công việc)
Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: (Công việc)
Vì hai tổ làm xong 1 công việc nên ta có pt:
(2)
Từ (1) và (2) ta có hpt:
(I)
Gọi x(h) là thời gian tổ 1 làm một mình hoàn thành công việc
y(h) là thời gian tổ 2 làm một mình hoàn thành công việc
(Điều kiện: x>12; y>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì khi tổ 1 làm trong 3 giờ, tổ 2 làm trong 5 giờ thì được 25% công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\)
Hình như đề sai rồi bạn