1 ô tô dự định đi từ A-B dài 120 km trong 1 thời gian nhất định.Sau khi đi được 1 giờ,ô tô bị chắn bởi tàu hoả trong 10 phút.Do đó để đến B đúng thời gian quy định ô tô phải tăng vận tốc thêm 6 km/h trên quãng đường còn lại.Tính vận tốc của ô tô lúc đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x\left(km/h\right)\)là vận tốc lúc đầu của ô tô \(\left(x>0\right)\)
Thời gian mà ô tô dự định đi: \(\dfrac{120}{x}\left(h\right)\)
Trong 1 giờ đầu ô tô đi được x (km) nên quãng đường còn lại là \(120-x\) (km)
Thời gian ô tô đi trên quãng đường còn lại: \(\dfrac{120-x}{x+6}\left(h\right)\)
Do xe đến B đúng hạn nên ta có phương trình:
\(\dfrac{120-x}{x+6}+1-\dfrac{1}{6}=\dfrac{120}{x}\)
Giải phương trình trên ta được: \(x=48\)
Gọi vận tốc của Ô tô lúc đầu là x (km/h). Điều kiện: 0 < x <120
Vận tốc của Ô tô lúc sau là: x + 6 (km/h)
Thời gian dự định đi là: \(\frac{120}{x}\)(h)
Quảng đường Ô tô đi trong 1 giờ là 1.x = x (km)
Quảng đường còn lại là: 120 – x (km)
Thời gian Ô tô đi trên quảng đường còn lại là: \(\frac{120-x}{x+6}\)(h)
Vì thời gian dự định đi bằng thời gian đi trên thực tế nên ta có phương trình:
\(\frac{120}{x}\) = 1 + \(\frac{1}{6}\) + \(\frac{120-6}{x+6}\)
==> x= 48 (km/h)
Bài 1:
Đổi 10 phút thành 1/6 giờ
Thời gian đi dự định: $\frac{AB}{48}$ (h)
Thời gian đi thực tế: $1+\frac{1}{6}+\frac{AB-48}{48+6}$
$=\frac{7}{6}+\frac{AB-48}{54}$ (h)
Ta có: $\frac{AB}{48}=\frac{7}{6}+\frac{AB-48}{54}$
$\Leftrightarrow \frac{AB}{432}=\frac{5}{18}$
$\Rightarrow AB=120$ (km)
Bài 2:
Đổi 1h40 phút thành $\frac{5}{3}$ giờ, đổi 20 phút thành $\frac{1}{3}$ giờ
Thời gian dự định đi: $\frac{AB}{12}$ (giờ)
Thời gian thực tế: \(\frac{AB}{3.12}+\frac{1}{3}+\frac{2AB}{3.36}=\frac{5AB}{108}+\frac{1}{3}\) (giờ)
Theo bài ra:
$\frac{5AB}{108}+\frac{1}{3}+\frac{5}{3}=\frac{AB}{12}$
$\Leftrightarrow AB=54$ (km)
Đáp án C
* Phân tích:
Ta luôn có: Quãng đường = vận tốc . thời gian
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48km.
Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).
Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).
Quãng đường BC | Vận tốc | Thời gian | |
Dự tính | x | 48 | |
Thực tế | x | 48 + 6 = 54 |
Ta có phương trình:
* Giải:
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ
⇒ SAC = 48.1 = 48 (km).
Gọi quãng đường BC dài là x (km; x > 0).
Vận tốc dự tính đi trên BC là: 48 km/h
⇒ Thời gian dự tính đi quãng đường BC hết: (giờ).
Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).
⇒ Thời gian thực tế ô tô đi quãng đường BC là: (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).
Do đó ta có phương trình:
⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).
Vậy quãng đường AB là:
SAB = SAC + SBC = 48 + 72 = 120 (km).
* Phân tích:
Ta luôn có: Quãng đường = vận tốc . thời gian
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48km.
Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).
Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).
Quãng đường BC | Vận tốc | Thời gian | |
Dự tính | x | 48 | |
Thực tế | x | 48 + 6 = 54 |
Ta có phương trình:
* Giải:
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ
⇒ SAC = 48.1 = 48 (km).
Gọi quãng đường BC dài là x (km; x > 0).
Vận tốc dự tính đi trên BC là: 48 km/h
⇒ Thời gian dự tính đi quãng đường BC hết: (giờ).
Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).
⇒ Thời gian thực tế ô tô đi quãng đường BC là: (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).
Do đó ta có phương trình:
⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).
Vậy quãng đường AB là:
SAB = SAC + SBC = 48 + 72 = 120 (km).
Gọi vận tốc lúc đầu là x km/h. Vận tốc lúc sau là: x + 6 km/h.
Thời gian đự định đi là: \(\frac{120}{x}\)
Quãng đường đi với vận tốc ban đầu là: x
Quãng đường đi với vận tốc sau là: \(120-x\)
Thời gian đi quãng đường sau là: \(\frac{120-x}{x+6}\)
Theo đề bài thì ta có:
\(\frac{120}{x}=1+\frac{1}{6}+\frac{120-x}{x+6}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-90\left(l\right)\\x=48\end{cases}}\)