Chứng minh định lí: trong một tam giác cân , hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.?
Và
Hãy chứng minh định lí đảo của định lí trên: nếu hai tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.
⇒ G là trọng tâm của tam giác
QUẢNG CÁO
Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.
Xét ΔGNB và ΔGMC có :
GN = GM (cmt)
GB = GC (cmt)
⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.
Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)
⇒ AB = AC ⇒ ΔABC cân tại A.
Giả sử ΔABC cân tại A có hai đường trung tuyến BM và CN, ta cần chứng minh BM = CN.
Ta có: AC = 2.AM, AB = 2. AN, AB = AC (vì ΔABC cân tại A)
⇒ AM = AN.
Xét ΔABM và ΔACN có:
AM = AN
AB = AC
Góc A chung
⇒ ΔABM = ΔACN (c.g.c) ⇒ BM = CN (hai cạnh tương ứng).
(Còn một số cách chứng minh khác, nhưng do giới hạn kiến thức lớp 7 nên mình xin sẽ không trình bày.)
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác => GB = BM; GC = CN mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G => do đó ∆BCN = ∆CBM vì: BC là cạnh chung CN = BM (gt) (cmt) => => ∆ABC cân tại A
định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau
giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB)
suy ra B=C và
AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC
xét tam giác DBC và tam giác ECB có:
EB=DC(cmt)
BC(chung)
B=C(tam giác ABC cân tại A)
suy ra tam giac sDBC=ACB(c.g.c)
suy ra EC=BD
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G
=> G là trọng tâm của tam giác
=> GB = BM; GC = CN
mà BM = CN (giả thiết) nên GB = GC
=> ∆GBC cân tại G =>
do đó ∆BCN = ∆CBM vì:
BC là cạnh chung
CN = BM (gt)
(cmt)
=> => ∆ABC cân tại A
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Vì ∆ ABC cân tại A=> AB = AC mà M, N là trung điểm AC, AB nên CM = BN
Do đó ∆CMB ;∆BNC có:
BC chung
CM = BN (cm trên)
AB = AC (∆ABC cân)
=> BM = CN (đpcm)
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Vì ∆ ABC cân tại A=> AB = AC mà M, N là trung điểm AC, AB nên CM = BN
Do đó ∆CMB ;∆BNC có:
BC chung
CM = BN (cm trên)
AB = AC (∆ABC cân)
=> BM = CN
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Ta có AN = NB = AB/2 (Tính chất đường trung tuyến)
AM = MC = AC/2 (Tính chất đường trung tuyến)
Vì ∆ ABC cân tại A=> AB = AC nên AM = AN
Xét ∆BAM ;∆CAN có:
AM = AN (cm trên)
Góc A chung
AB = AC (∆ABC cân)
Nên suy ra ∆BAM = ∆CAN (c-g-c)
=> BM = CN ( 2 cạnh tương ứng)