Bài 6. Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB. Hai đường thẳng cắt nhau tại D.
a. Chứng minh ∆ABC =∆ADC
b. Chứng minh ∆ADB = ∆CBD
c. Gọi O là giao điểm của AC và BD. Chứng minh ∆ABO = ∆COD
Bài 7. Cho góc xAy khác góc bẹt. Gọi AD là tia tia phân giác của góc xAy. Qua D kẻ đường thẳng vuông góc với Ay cắt Ay tại C và cắt Ax tại E. Qua D kẻ đường thẳng vuông góc với Ax cắt Ax tại B và cắt Ay tại H. Chứng minh:
a. ∆ABD = ∆ACD
b. ∆DBE = ∆DCH
c. ∆ABH = ∆ACE
6:
a: Xét ΔABC và ΔCDA có
góc BAC=góc DCA
AC chung
góc BCA=góc DAC
=>ΔABC=ΔCDA
b: Xét ΔADB và ΔCBD có
AD=CB
AB=CD
DB chung
=>ΔADB=ΔCBD
c: Xét tứ giác ABCD có
AB//CD
AD//BC
=>ABCD là hình bình hành
=>O là trung điểm chung của AC và DB
Xét ΔOAB và ΔOCD có
OA=OC
góc AOB=góc COD
OB=OD
=>ΔOAB=ΔOCD