K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

Xét g(x) = f(x) - x^2 -2
g(x) có bậc 4 và g(1)=g(3)=g(5)=0
Vậy g(x)=(x-1)(x-3)(x-5)(x+a) vì f có hệ số cao nhất là 1
=> f(x) = (x-1)(x-3) (x-5)(x+a) + x^2 +2
f(-2)=-105(a-2)+6=216-105a
f(6) 15(a+6) + 38 = 128 +15a =
f(-2)+7f(6)=216 - 105a + 896 + 105a = 1112

Ninh OSS

17 tháng 7 2015

Xét g(x) = f(x) - x^2 -2 
g(x) có bậc 4 và g(1)=g(3)=g(5)=0 
Vậy g(x)=(x-1)(x-3)(x-5)(x+a) vì f có hệ số cao nhất là 1 
=> f(x) = (x-1)(x-3)(x-5)(x+a) + x^2 +2 
f(-2) = -105(a-2) + 6 = 216 -105a 
f(6) = 15(a+6) + 38 = 128 +15a 
f(-2) + 7f(6) = 216 - 105a + 896 + 105a = 1112

10 tháng 5 2019

Tại sao lại có x+a vậy bạn?

NV
13 tháng 9 2021

Đặt \(H\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)

\(\Rightarrow H\left(1\right)=H\left(3\right)=H\left(5\right)=0\)

\(\Rightarrow H\left(x\right)\) có 3 nghiệm 1; 3; 5

\(\Rightarrow H\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)

\(\Rightarrow P\left(x\right)=H\left(x\right)+x^2+2=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)+x^2+2\)

\(\Rightarrow P\left(-2\right)+7P\left(6\right)=-105\left(-2-a\right)+4+2+7\left[15\left(6-a\right)+36+2\right]=1112\)

10 tháng 5 2019

Đặt g(x)= p(x)- x^2 -2

Thay x =1 vào biểu thức trên ta có

g(1)= p(1)-3

Mà p(1)=3 => g(1)=0

thay x=3 vào biểu thức trên ta có

g(3)= p(3)- 3^2 -2

g(3)= 0

thay x=5 vào biểu thức trên ta có:

g(5)=0 

=> x=1;x=3;x=5 là các nghiệm của g(x)

=> g(x)= (x-1)(x-3)(x-5)(x+a)

Mà p(x) = g(x)+x^2+2

=>p(x)= (x-1)(x-3)(x-5)(x+a)+ x^2 +2

=>p(-2)= (-2-1)(-2-3)(-2-5)(-2+a)+ (-2)^2 +2

=>p(-2)= 216-105a

7p(6)=896+105a

=>  7p(6)+ p(-2)= 1112

12 tháng 9 2015

thử vào câu hỏi tương tự coi nhìn vào mà làm