K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

A B C H 20 cm 12 cm 5 cm

Áp dụng định lý Pi ta go vào tam giác AHB ,có:

\(AB=\sqrt{AH^2+HB^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)

Áp dụng định lý Pi ta go vào tam giác AHC ,có:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)

Chu vi tam giác ABC là:

\(13+20+5+16=54\left(cm\right)\)

5 tháng 2 2022

=54 nha

HT

k cho mình nha

@@@@@@@@@@@@@@@@@@

Giúp mình với !!! vẽ hình giúp mình với nha !! Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tínha) Độ dài cạnh ABb) Chu vi tam giác ABCBài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =12cm; HB = 5cma) Tính độ dài cạnh ABb) Tính chu vi tam giác ABCBài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC làtam giác gì ? Vì sao ?Bài 4: Cho tam giác ABC vuông tại A, có B 60  0 và AB = 5cm. Tia phân giác...
Đọc tiếp

Giúp mình với !!! vẽ hình giúp mình với nha !! yeu

Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tính
a) Độ dài cạnh AB
b) Chu vi tam giác ABC
Bài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =
12cm; HB = 5cm
a) Tính độ dài cạnh AB
b) Tính chu vi tam giác ABC
Bài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC là
tam giác gì ? Vì sao ?
Bài 4: Cho tam giác ABC vuông tại A, có B 60  0 và AB = 5cm. Tia phân giác của góc
B cắt AC tại D. Kẻ DE vuông góc với BC (EBC) . Chứng minh:
a) ABD = EBD.
b) ABE là tam giác đều.
c) AEC cân.
d) Tính độ dài cạnh AC.
Bài 5: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( HBC )
a) Chứng minh: AHB =  AHC
b) Giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh  ABM
cân
d) Chứng minh BM // AC
Bài 6: Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K.
Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) So sánh AE và EC
e) Gọi N là trung điểm của MC. Chứng minh 3 điểm B, E, N thẳng hàng
Bài 7: Cho ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.
a) Chứng minh:  ABC cân.
b) Chứng minh    AHB AHC, từ đó chứng minh AH là tia phân giác của góc
A.
c) Từ H vẽ HM  AB ( ) M AB  và kẻ HN  AC ( ) N AC  . C/m:  BHM =  HCN
d) Tính độ dài AH.
e) Từ B kẻ Bx  AB, từ C kẻ Cy  AC chúng cắt nhau tại O. Tam giác OBC là
tam giác gì? Vì sao?

1
11 tháng 3 2022

bạn đăng tách ra nhé

 Bài 1 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=9cm\)

Chu vi tam giác ABC là 41 + 40 + 9 = 90  cm 

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

16 tháng 4 2020

chu vi là 54 cm

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

22 tháng 3 2021

A B C H 12 CM 20 CM 5 CM A)  tam giác ABH vuông tại A . Theo định lí Py-Ta Go ta có

\(AH^2+BH^2=AB^2\)

THAY BH = 5CM , AH = 12 CM , ta được

\(12^2+5^2=AB^2\)

\(AB^2\)= 144+25 =169

AB =\(\sqrt{169}\)=13 CM

SORRY MÌNH CHỈ GIẢI ĐƯỢC CÂU A THÔI 

MONG BẠN THÔNG CẢM

23 tháng 3 2021

A B C H 20 12 5

a, Xét tam giác AHB, có ^AHB = 900

Áp dụng định lí Py ta go ta có : 

\(AB^2=AH^2+HB^2=144+25=169\)

\(\Rightarrow AB^2=169\Rightarrow AB=13\)cm 

b, Xét tam giác ACH, có ^AHC = 900

Áp dụng định lí Py ta go ta có : 

\(AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2\)

\(=400-144=256\Rightarrow CH=\sqrt{256}=16\)cm 

Vậy BC = CH + HB = 16 + 5 = 21 cm 

Chu vi tam giác ABC là : 

\(P_{\Delta ABC}=20+21+13=54\)cm 

2 tháng 3 2018

Vì AHC vuông

=> AC^2 = AH^2 + HC^2 ( định lý pytago đảo )

=> AC^2 = 144 + 25

=> AC^2 = 169 

=> AC = 13

2 tháng 3 2018

Áp dụng định lí Py-ta-go vào tam giác ABH ta được:

 \(AB^2=AH^2+BH^2\)

Mà AB=20cm; AH=12cm

\(\Rightarrow20^2=12^2+BH^2\)

\(\Rightarrow400=144+BH^2\)

\(\Rightarrow BH^2=400-144\)

\(\Rightarrow BH^2=256\)

\(\Rightarrow BH=16\)(do BH >0) (cm)

Có BH+HC=BC

Mà BH=16cm;HC=5cm

=> BC=16+5=21(cm)

Vậy BC=21cm

k cho mình nha

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)