Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của (O). Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác ADFC là tứ giác nội tiếp. 2) Chứng minh DF || BK. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi E là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh góc MDF= góc MFD và M là tâm đường tròn ngoại tiếp của tam giác DEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét (O) có
M là trung điểm của dây BC(gt)
nên OM\(\perp\)BC(Định lí đường kính vuông góc với dây)
Xét tứ giác BMOF có
\(\widehat{BFO}+\widehat{BMO}=180^0\left(90^0+90^0=180^0\right)\)
nên BMOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a. Ta thấy ngay tứ giác ABLF có hai góc đối bằng 900 và tứ giác AIFC có \(\widehat{AIC}=\widehat{AFC}=90^o\) nên chúng đều là các tứ giác nội tiếp.
b. Ta thấy đường kính AK vuông góc với dây cung CD tại K nên K là trung điểm CD. Vậy ACD là tam giác cân tại A hay AK là phân giác. Từ đó suy ra cung CK = cung CK hay \(\widehat{LCK}=\widehat{KBC}\)
Vậy thì \(\Delta LCK\sim\Delta CBK\left(g-g\right)\Rightarrow\frac{KL}{KC}=\frac{KC}{KB}\Rightarrow KL.KB=KC^2.\)
c. Ta thấy \(\Delta LFK\sim\Delta LBS\left(g-g\right)\Rightarrow\frac{LF}{LB}=\frac{LK}{LS}\left(1\right)\)
\(\Delta LCK\sim\Delta LBD\left(g-g\right)\Rightarrow\frac{LK}{LD}=\frac{LC}{LB}\left(2\right)\)
Từ (1), (2) suy ra \(\frac{LF}{LB}:\frac{LC}{LB}=\frac{LK}{LS}:\frac{LK}{LD}\Rightarrow\frac{LF}{LC}=\frac{LD}{LS}\)
\(\Rightarrow LF.LS=LC.LD\Rightarrow LF\left(SD+DL\right)=\left(LF+FC\right)LD\)
\(\Rightarrow LF.SD+LF.DL=LF.DL+FC.LD\Rightarrow LF.DS=FC.LD\)
\(=\frac{LD}{DS}=\frac{LF}{FC}\left(đpcm\right)\)
\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)
Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp
b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)
\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )
\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)
\(\Rightarrow DF\perp CA\)
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD
a) Chứng minh tứ giác BMFO nội tiếp
b) chứng minh HE//BD
c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )
Chịu @ _@
1: góc ADC=góc AFC=90 độ
=>ADFC nội tiếp