K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)

\(\Rightarrow AH:-2x+4y+c'=0\)

AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)

\(\Rightarrow c'=-2\)

\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)

Tọa độ H là nghiệm của hệ phương trình :

\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

2 tháng 5 2023

 Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\) 

\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)

 Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)

 Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

20 tháng 5 2018

Chọn D

25 tháng 4 2019

d: 4x-3y+5=0

=>VTPT là (4;-3) và (d) đi qua A(1;3)

=>VTCP là (3;4)

PTTS là:

x=1+3t và y=3+4t

=>N(3t+1;4t+3)

NM=1

=>\(\sqrt{\left(3t+1+1\right)^2+\left(4t+3-2\right)^2}=1\)

=>9t^2+12t+4+16t^2+8t+1=1

=>25t^2+20t+4=0

=>(5t+2)^2=0

=>t=-2/5

=>N(-1/5;-3/5)

21 tháng 7 2018

Đáp án A

- Do M thuộc d  suy ra M( t; -1-t).

 Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông

(A; B là 2 tiếp điểm).

Do đó:

- Ta có :

- Do đó :  2t2+ 8= 12

2 tháng 7 2018

21 tháng 11 2018

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

NV
12 tháng 12 2020

Cách 1:

Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)

Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)

\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)

\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)

\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)

Dấu "=" xảy ra khi và chỉ khi:

\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)

\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

NV
12 tháng 12 2020

Cách 2:

Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)

Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:

\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)

Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)

\(\Rightarrow C\left(2;2\right)\)

Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)

Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)

\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD

\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

30 tháng 11 2018