K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

4 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

15 tháng 5 2023

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

16 tháng 5 2023

Toán lớp 10 không dùng đạo hàm.

a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16

=>y=2 hoặc y=-6

TH1: A(-2;2)

I(1;-2)

vecto IA=(-3;4)

Phương trình Δ là:

-3(x-1)+4(y+2)=0

=>-3x+3+4y+8=0

=>-3x+4y+11=0

TH2: A(-2;-6); I(1;-2)

vecto IA=(-3;-4)=(3;4)

Phương trình IA là:

3(x+2)+4(y+6)=0

=>3x+6+4y+24=0

=>3x+4y+30=0

b: Δ//12x+5y+6=0

=>Δ: 12x+5y+c=0

d(I;Δ)=5

=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)

=>|c+2|=5*13=65

=>c=63 hoặc c=-67

(d')//(d)

=>(d'): 4x-3y+c=0

(C): x^2-4x+4+y^2+6y+9-16=0

=>(x-2)^2+(y+3)^2=16

=>R=4; I(2;-3)

Theo đề, ta có: d(I;(d'))=4

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

=>|c+17|=4*5=20

=>c=3 hoặc c=-37

(C); x^2+6x+y^2-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>I(-3;1); \(R=\sqrt{10}\)

Để Δ tiếp xúc vơi (C) thì d(I;Δ)=căn 10

=>\(\dfrac{\left|-3\cdot3+1\cdot\left(-1\right)+2m\right|}{\sqrt{3^2+\left(-1\right)^2}}=\sqrt{10}\)

=>|2m-10|=10

=>2m-10=10 hoặc 2m-10=-10

=>m=0 hoặc m=10

loading...  loading...  loading...  

31 tháng 7 2017

Đáp án: C

Ta có:

(C): x 2  + y 2  + 2x + 4y = 0 ⇔ (x + 1 ) 2  + (y + 2 ) 2  = 5

⇒ I(-1;-2), R = 5

Vì d’ song song với d nên d': 2x + y + c = 0, (c ≠ -3)

Đường thẳng d’ tiếp xúc với (C) nên

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Vậy phương trình đường thẳng d’ là: 2x + y - 1 = 0 hoặc 2x + y + 9 = 0