cho ΔABC vuông tại A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH(H ϵ BC)
a) tính dt Δvuông ABC
b) vẽ p/g AD của góc A( D ϵ BC). tính DB,DC
c) C/m: α)ΔABC và ΔHBA đồng dạng
β)AB2 = BH.BC
γ)1/AH2 = 1/AB2 + 1/AC2
giúp mik vs mik đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có
\(\widehat{CBA}\) chung
Do đó: ΔCAB\(\sim\)ΔAHB
c: Ta có: ΔCAB\(\sim\)ΔAHB
nên AC/HA=AB/HB=CB/AB
hay \(AB^2=BH\cdot BC\)
BH=3,6cm
=>CH=6,4cm
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2=100\)
\(BC=10\)
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
b góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c => \(\frac{AB}{HB}=\)\(\frac{BC}{BA}\) => \(AB^2=HB.BC\)
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
BC^2=AB^2+AC^2
BC^2=6^2+8^2=100
BC=10
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
B góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c => AB/HB = BC/BA => AB^2 = HB.BC
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
BC2=AB2+AC2
BC2=62+82=100
BC=10
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
B góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c => AB/HB = BC/BA => AB2 = HB.BC
1.Xét ΔHBA và ΔABC có:
góc AHB=góc BAC=90o
Góc B chung
=> ΔABC đồng dạng ΔHBA (g.g)
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)
2. Xét ΔHBI và ΔABE có:
góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)
góc BAE=góc IHB=90o
=>ΔHBI đồng dạng ΔABE (g.g)
a.
Xét hai tam giác vuông HBA và ABC có:
\(\left\{{}\begin{matrix}\widehat{HBA}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Do \(\Delta HBA\sim\Delta ABC\left(cmt\right)\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Áp dụng định lý Pitago trong tam giác vuông HBA:
\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
a. Diện tích của Δ ABC là:
\(\dfrac{1}{2}\) . 6 . 8 = 24 cm2
b. Ta có: Δ ABC vuông tại A
Theo đ/lí Py - ta - go
BC2 = AB2 + AC2
BC2 = 62 + 82
BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Vì AD là tia phân giác của \(\widehat{A}\)
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Rightarrow\) \(\dfrac{6}{8}\) = \(\dfrac{DB}{10-DB}\)
\(\Rightarrow\) \(\dfrac{3}{4}=\dfrac{DB}{10-DB}\)
\(\Rightarrow\) 3 . (10 - DB) = 4DB
\(\Rightarrow\) 30 - 3DB - 4DB = 0
\(\Rightarrow\) 30 - 7DB = 0
\(\Rightarrow\) DB = \(\dfrac{30}{7}\) \(\approx\) 4,3 cm
Ta có: DC = 10 - DB
\(\Rightarrow\) DC = 10 - 4,3
\(\Rightarrow\) DC = 5,7 cm
c. Xét ΔABC và ΔHBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)
\(\Rightarrow\) AB2 = BH . BC
Vì ΔABC vuông tại A
SΔABC = \(\dfrac{AH.BC}{2}\) = \(\dfrac{AB.AC}{2}\) \(\Rightarrow\) AB . AC
\(\Leftrightarrow\) AH = \(\dfrac{AB.AC}{BC}\) = \(\Leftrightarrow\) \(\dfrac{1}{AH}\) = \(\dfrac{AH}{AB.AC}\)
\(\Leftrightarrow\) \(\dfrac{1}{AB^2}\) = \(\dfrac{BC^2}{AB^2.AC^2}\)
Mặt khác theo đ/lí Py - ta - go:
BC2 = AB2 + AC2
\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{AB^2+AC^2}{AB^2.ÂC^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\)
\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) (dpcm)
nhớ tick cho cj nha