Cho A =\(\frac{100^{2007}+1}{100^{2008}+1}\)và cho B=\(\frac{100^{2006}+1}{100^{2007}+1}\).Hãy so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất : \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (\(a;b,m\in N\)*)
Ta có :
\(A=\dfrac{100^{2007}+1}{100^{2008}+1}< \dfrac{100^{2007}+1+99}{100^{2008}+1+99}=\dfrac{100^{2007}+100}{100^{2008}+100}=\dfrac{100\left(100^{2006}+1\right)}{100\left(100^{2007}+1\right)}=\dfrac{100^{2006}+1}{100^{2007}+1}=B\)
\(\Rightarrow A< B\)
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N
\(A=\frac{100^{2007}+1}{100^{2008}+1}\Rightarrow100.A=\frac{100^{2008}+100}{100^{2008}+1}=\frac{100^{2008}+1+99}{100^{2008}+1}=1+\frac{99}{100^{2008}+1}\)
\(B=\frac{100^{2006}+1}{100^{2007}+1}\Rightarrow100.B=\frac{100^{2007}+100}{100^{2007}+1}=\frac{100^{2007}+1+99}{100^{2007}+1}=1+\frac{99}{100^{2007}+1}\)
Vì \(\frac{99}{100^{2007}+1}>\frac{99}{100^{2008}+1};1=1\Rightarrow1+\frac{99}{100^{2007}+1}>1+\frac{99}{100^{2008}+1}\)hay \(A>B\)
Vậy \(A>B\)
Nghỉ hè rồi