K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ANM+góc ACM=180 độ

=>ANMC nội tiếp

b: Xét ΔANM vuông tại N và ΔADB vuông tại D có

góc NAM chung

=>ΔANM đồng dạng với ΔADB

=>AN/AD=AM/AB

=>AM*AD=AN*AB

a: Vì A,B,D,C cùng nằm trên (O)

nên ABDC nội tiếp

b: Xét (D) có

MB,MF là tiếp tuyến

=>MB=MF

Xét (D) có

NF,NC là tiếp tuyến

=>NF=NC

=>MB+CN=MF+NF=MN

a: A,B,D,C cùng thuộc (O)

=>ABDC nọi tiép

b: AB vuông góc BD

=>AB là tiếp tuyến của (D)

AC vuông góc CD

=>AC là tiếp tuyến của (D) 

MB,MF là tiêp tuyến của (D) nên MB=MF

NF,NC là tiếp tuyến của (D) nên NF=NC

=>BM+NC=MF+NF=MN

a: góc ADB=1/2*sđ cung AB=1/2*180=90 độ

Xét tứ giác BDIH có

góc IHB+góc IDB=180 độ

=>BDIH là tứ giác nội tiếp

b: góc IDH=góc IBH=1/2*sđ cung AC=góc ADC

=>DA là phân giác của góc CDH

 

a: góc ADB=1/2*180=90 độ

góc EOB+góc EDB=180 độ

=>EOBD nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD

c: góc EIB=góc EDB=90 độ

=>EIDB nội tiếp

=>góc IED=góc IBD; góc IDE=góc IBE

góc IBE+góc OBE=góc IBO=45 độ

ΔEAB cân tại E 

=>góc EAB=góc EBA

=>góc IBE+góc EAB=45 độ

góc IDE=góc IBE

=>góc IDE+1/2*sđ cung BD=45 độ

1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB

=>góc IED+1/2*sđ cung BD=45 độ

=>góc IDE=góc IED

=>ID=IE

góc ICE=45 độ; góc EIC=90 độ

=>ΔEIC vuôngcân tại I

=>IE=IC=ID

=>ĐPCM

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
19 tháng 1 2023

 mình cần gấp nha

19 tháng 1 2023

haha